Ultrasound-Assisted Extraction of Protein from Pumpkin Seed Press Cake: Impact on Protein Yield and Techno-Functionality

Publikation: Beitrag in FachzeitschriftForschungsartikelEingeladenBegutachtung

Beitragende

Abstract

Conventional solvent-based methods widely used for isolating plant proteins may deliver an unsatisfactory protein yield and/or result in protein degradation. The present study started with the optimization of pumpkin seed protein from press cake by alkaline extraction and subsequent isoelectric precipitation. Subsequently, extraction was supported by ultrasound under three conditions: ultrasonic treatment followed by alkaline extraction (US+AE), concomitant ultrasonic treatment and alkaline extraction (UAE), and alkaline extraction followed by ultrasonic treatment (AE+US). Compared to the control group, an increase in protein yield was achieved after ultrasonic treatment, while the highest protein yield was obtained with AE+US (57.8 ± 2.0%). Isolates with a protein content of 94.04 ± 0.77 g/100 g and a yield of 43.6 ± 0.97% were obtained under optimized conditions. Following ultrasonic treatment applied during extraction, solubility, foaming capacity, foam stability, and denaturation enthalpy of the isolated protein increased, and water binding capacity decreased as compared to non-sonicated samples. The d90 particle size percentile of the extracted suspensions was 376.68 ± 38.32 µm for the control experiments, and particle size was significantly reduced in ultrasound-assisted treatments down to d90 = 179.93 ± 13.24 µm for the AE+US treatment). Generally, ultrasonication resulted in a significant increase in protein yield and improved techno-functional properties of the isolates.

Details

OriginalspracheEnglisch
Aufsatznummer4029
FachzeitschriftFoods
Jahrgang11
Ausgabenummer24
PublikationsstatusVeröffentlicht - 13 Dez. 2022
Peer-Review-StatusJa

Externe IDs

PubMed 36553771
Scopus 85144734220
WOS 000902710700001
ORCID /0000-0002-1281-5966/work/142248837

Schlagworte

Schlagwörter

  • alkaline extraction, foaming capacity, foaming stability, solubility, ultrasonic treatment, Alkaline extraction, Foaming stability, Foaming capacity, Solubility, Ultrasonic treatment

Bibliotheksschlagworte