Substrate-dependent differences in ferroelectric behavior and phase diagram of Si-doped hafnium oxide

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Maximilian Lederer - , Professur für Experimentalphysik/Photophysik, Fraunhofer Institute for Electronic Nano Systems (Autor:in)
  • Konstantin Mertens - , Fraunhofer Institute for Electronic Nano Systems (Autor:in)
  • Ricardo Olivo - , Fraunhofer Institute for Electronic Nano Systems (Autor:in)
  • Kati Kühnel - , Fraunhofer Institute for Electronic Nano Systems (Autor:in)
  • David Lehninger - , Fraunhofer Institute for Electronic Nano Systems (Autor:in)
  • Tarek Ali - , Fraunhofer Institute for Electronic Nano Systems (Autor:in)
  • Thomas Kämpfe - , Fraunhofer Institute for Electronic Nano Systems (Autor:in)
  • Konrad Seidel - , Fraunhofer Institute for Electronic Nano Systems (Autor:in)
  • Lukas M. Eng - , Professur für Experimentalphysik/Photophysik, Technische Universität Dresden, Würzburg-Dresden Cluster of Excellence ct.qmat (Autor:in)

Abstract

Abstract: Non-volatile memories based on ferroelectric hafnium oxide, especially the ferroelectric field-effect transistor (FeFET), have outstanding properties, e.g. for the application in neuromorphic circuits. However, material development has focused so far mainly on metal–ferroelectric–metal (MFM) capacitors, while FeFETs are based on metal–ferroelectric–insulator–semiconductor (MFIS) capacitors. Here, the influence of the interface properties, annealing temperature and Si-doping content are investigated. Antiferroelectric-like behavior is strongly suppressed with a thicker interface layer and high annealing temperature. In addition, high-k interface dielectrics allow for thicker interface layers without retention penalty. Moreover, the process window for ferroelectric behavior is much larger in MFIS capacitors compared to MFM-based films. This does not only highlight the substrate dependence of ferroelectric hafnium oxide films, but also gives evidence that the phase diagram of ferroelectric hafnium oxide is defined by the mechanical stress. Graphic Abstract: [Figure not available: see fulltext.].

Details

OriginalspracheEnglisch
Seiten (von - bis)4370-4378
Seitenumfang9
FachzeitschriftJournal of materials research
Jahrgang36
Ausgabenummer21
PublikationsstatusVeröffentlicht - 14 Nov. 2021
Peer-Review-StatusJa

Externe IDs

ORCID /0000-0002-2484-4158/work/142257576

Schlagworte

Schlagwörter

  • Antiferroelectric, Ferroelectric, Hafnium oxide, Interface