Strontium Ferromolybdate-Based Magnetic Tunnel Junctions

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Gunnar Suchaneck - , Professur für Festkörperelektronik (Autor:in)
  • Evgenii Artiukh - , Technische Universität Dresden, Belarus Academy of Sciences (Autor:in)
  • Nikolai A. Sobolev - , University of Aveiro, National University of Science and Technology "MISiS" (Autor:in)
  • Eugene Telesh - , Belarusian State University of Informatics and Radioelectronics (Autor:in)
  • Nikolay Kalanda - , Belarus Academy of Sciences, National University of Science and Technology "MISiS" (Autor:in)
  • Dmitry A. Kiselev - , National University of Science and Technology "MISiS" (Autor:in)
  • Tatiana S. Ilina - , National University of Science and Technology "MISiS" (Autor:in)
  • Gerald Gerlach - , Professur für Festkörperelektronik (Autor:in)

Abstract

Thin-film strontium ferromolybdate is a promising material for applications in roomtemperature magnetic tunnel junction devices. These are spin-based, low-power-consuming alternatives to CMOS in non-volatile memories, comparators, analog-to-digital converters, and magnetic sensors. In this work, we consider the main tasks to be solved when creating such devices based on strontium ferromolybdate: (i) selecting an appropriate tunnel barrier material, (ii) determining the role of the interface roughness and its quantification, (iii) determining the influence of the interface dead layer, (iv) establishing appropriate models of the tunnel magnetoresistance, and (v) promoting the low-field magnetoresistance in (111)-oriented thin films. We demonstrate that (i) barrier materials with a lower effective electronegativity than strontium ferromolybdate are beneficial, (ii) diminution of the magnetic offset field (the latter caused by magnetic coupling) requires a wavy surface rather than solely a surface with small roughness, (iii) the interface dead-layer thickness is of the order of 10 nm, (iv) the tunnel magnetoresistance deteriorates due to spin-independent tunneling and magnetically disordered interface layers, and (v) antiphase boundaries along the growth direction promote the negative low-field magnetoresistance by reducing charge carrier scattering in the absence of the field.

Details

OriginalspracheEnglisch
Aufsatznummer2717
FachzeitschriftApplied Sciences (Switzerland)
Jahrgang12
Ausgabenummer5
PublikationsstatusVeröffentlicht - 1 März 2022
Peer-Review-StatusJa

Externe IDs

ORCID /0000-0002-7062-9598/work/174430581

Schlagworte

Schlagwörter

  • Interface layers, Magnetic tunnel junction, Strontium ferromolybdate, Surface roughness, Tunnel barrier material, Tunnel magnetoresistance