Semismooth Newton-type method for bilevel optimization: global convergence and extensive numerical experiments

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung



We consider the standard optimistic bilevel optimization problem, in particular upper- and lower-level constraints can be coupled. By means of the lower-level value function, the problem is transformed into a single-level optimization problem with a penalization of the value function constraint. For treating the latter problem, we develop a framework that does not rely on the direct computation of the lower-level value function or its derivatives. For each penalty parameter, the framework leads to a semismooth system of equations. This allows us to extend the semismooth Newton method to bilevel optimization. Besides global convergence properties of the method, we focus on achieving local superlinear convergence to a solution of the semismooth system. To this end, we formulate an appropriate CD-regularity assumption and derive sufficient conditions so that it is fulfilled. Moreover, we develop conditions to guarantee that a solution of the semismooth system is a local solution of the bilevel optimization problem. Extensive numerical experiments on 124 examples of nonlinear bilevel optimization problems from the literature show that this approach exhibits a remarkable performance, where only a few penalty parameters need to be considered.


Seiten (von - bis)1770-1804
FachzeitschriftOptimization Methods and Software
PublikationsstatusVeröffentlicht - 2022

Externe IDs

Mendeley e71bca5b-973e-3a32-946f-c94bfb056a23
WOS 000725984900001
Scopus 85117835335
dblp journals/oms/FischerZZ22


DFG-Fachsystematik nach Fachkollegium

Fächergruppen, Lehr- und Forschungsbereiche, Fachgebiete nach Destatis

Ziele für nachhaltige Entwicklung


  • 90C26, 90C30, 90C46, 90C53, Bilevel optimization, Newton method, lower-level value function, Lower-level value function