Multi-class texture analysis in colorectal cancer histology

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Jakob Nikolas Kather - , Universität Heidelberg (Autor:in)
  • Cleo Aron Weis - , Universität Heidelberg (Autor:in)
  • Francesco Bianconi - , University of Perugia (Autor:in)
  • Susanne M. Melchers - , Universität Heidelberg (Autor:in)
  • Lothar R. Schad - , Universität Heidelberg (Autor:in)
  • Timo Gaiser - , Universität Heidelberg (Autor:in)
  • Alexander Marx - , Universität Heidelberg (Autor:in)
  • Frank Gerrit Zöllner - , Universität Heidelberg (Autor:in)

Abstract

Automatic recognition of different tissue types in histological images is an essential part in the digital pathology toolbox. Texture analysis is commonly used to address this problem; mainly in the context of estimating the tumour/stroma ratio on histological samples. However, although histological images typically contain more than two tissue types, only few studies have addressed the multi-class problem. For colorectal cancer, one of the most prevalent tumour types, there are in fact no published results on multiclass texture separation. In this paper we present a new dataset of 5,000 histological images of human colorectal cancer including eight different types of tissue. We used this set to assess the classification performance of a wide range of texture descriptors and classifiers. As a result, we found an optimal classification strategy that markedly outperformed traditional methods, improving the state of the art for tumour-stroma separation from 96.9% to 98.6% accuracy and setting a new standard for multiclass tissue separation (87.4% accuracy for eight classes). We make our dataset of histological images publicly available under a Creative Commons license and encourage other researchers to use it as a benchmark for their studies.

Details

OriginalspracheEnglisch
Aufsatznummer27988
FachzeitschriftScientific reports
Jahrgang6
PublikationsstatusVeröffentlicht - 16 Juni 2016
Peer-Review-StatusJa
Extern publiziertJa

Externe IDs

PubMed 27306927

Schlagworte

Ziele für nachhaltige Entwicklung

ASJC Scopus Sachgebiete