MTPPy: Open-Source AI-friendly Modular Automation
Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/Gutachten › Beitrag in Konferenzband › Beigetragen › Begutachtung
Beitragende
Abstract
Modular Automation offers promising technologies for the process and chemical industry. It meets the requirements for greater flexibility and a shorter development cycle for production facilities by dividing the process into smaller standardized units. Key element of Modular Automation is the Module Type Package (MTP). It represents a standardized and manufacturer-independent description of the automation interface for self-contained production units, or Process Equipment Assemblies (PEA), and endows the plug-and-produce capability of PEAs. Software solutions to program MTP compatible PEAs are mostly provided by the Programmable Logic Controller (PLC) manufacturers. They are proprietary and bound to certain hardware and even programming languages. Therefore, their suitability for implementation of soft sensors based on data-driven advanced analytics is strongly limited. In this article we present an opensource Python package, MTPPy, designed for rapid prototyping of MTP-capable soft sensors with a focus on AI-based research applications. MTPPy is aimed at the accelerated deployment of soft sensors in the modular plants; thus, closing the gap between the data-driven model development and integration into the production.
Details
Originalsprache | Englisch |
---|---|
Titel | 2022 IEEE 27th International Conference on Emerging Technologies and Factory Automation (ETFA) |
Herausgeber (Verlag) | IEEE Computational Intelligence Society (CIS) |
Seiten | 1-7 |
Seitenumfang | 7 |
ISBN (elektronisch) | 9781665499965 |
ISBN (Print) | 978-1-6654-9997-2 |
Publikationsstatus | Veröffentlicht - 9 Sept. 2022 |
Peer-Review-Status | Ja |
Konferenz
Titel | 2022 27th IEEE International Conference on Emerging Technologies and Factory Automation |
---|---|
Kurztitel | ETFA 2022 |
Veranstaltungsnummer | 27 |
Dauer | 6 - 9 September 2022 |
Webseite | |
Bekanntheitsgrad | Internationale Veranstaltung |
Ort | Universität Stuttgart |
Stadt | Stuttgart |
Land | Deutschland |
Externe IDs
Scopus | 85141375788 |
---|---|
Mendeley | c6a5d7b6-3e0f-34ad-8119-75caaa942c79 |
ORCID | /0000-0001-5165-4459/work/142248261 |
Schlagworte
Schlagwörter
- Chemical industry, Soft sensors, Raman scattering, Programmable logic devices, Rapid prototyping, Production facilities, Hardware, Advanced Analytics, Artificial Intelligence, Chemical Industry, Modular Plant, Module type package, PEA Engineering, PEA-as-Code, Process Industry, Soft sensor, VDI/VDE/NAMUR 2658