Markov-modulated generalized Ornstein-Uhlenbeck processes and an application in risk theory
Publikation: Beitrag in Fachzeitschrift › Forschungsartikel › Beigetragen › Begutachtung
Beitragende
Abstract
By embedding a Markov-modulated random recurrence equation in continuous time, we derive the Markovmodulated generalized Ornstein-Uhlenbeck process. This process turns out to be the unique solution of a stochastic differential equation driven by a bivariate Markov-additive process. We present this stochastic differential equation as well as its solution explicitely in terms of the driving Markov-additive process. Moreover, we give necessary and sufficient conditions for strict stationarity of the Markov-modulated generalized Ornstein-Uhlenbeck process, and prove that its stationary distribution is given by the distribution of a certain exponential functional of Markovadditive processes. Finally, we propose a Markov-modulated risk model with investment that generalizes Paulsen’s risk process to a Markov-switching environment, and derive a formula for the ruin probability in this risk model.
Details
| Originalsprache | Englisch |
|---|---|
| Seiten (von - bis) | 1309–1339 |
| Seitenumfang | 31 |
| Fachzeitschrift | Bernoulli : official journal of the Bernoulli Society for Mathematical Statistics and Probability |
| Jahrgang | 28 |
| Ausgabenummer | 2 |
| Publikationsstatus | Veröffentlicht - Mai 2022 |
| Peer-Review-Status | Ja |
Externe IDs
| Scopus | 85127638567 |
|---|---|
| ORCID | /0000-0002-9999-7589/work/142238019 |
Schlagworte
DFG-Fachsystematik nach Fachkollegium
ASJC Scopus Sachgebiete
Schlagwörter
- Exponential functional, Generalized Ornstein-Uhlenbeck process, Lévy process, Markov additive process, Markov-modulated random recurrence equation, Markov-switching model, Risk theory, Ruin probability, Stationary process