Hot off the Press: Finding e-locally Optimal Solutions for Multi-objective Multimodal Optimization
Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/Gutachten › Beitrag in Konferenzband › Beigetragen › Begutachtung
Beitragende
Abstract
Here we briefly summarize the main findings of the above men-tioned paper by Rodriguez-Fernandez et al., 2024 [4]. In this work, the authors address the problem of computing all locally optimal solutions of a given multi-objective problem whose images are suffi-ciently close to the Pareto front. Such e-locally optimal solutions are particularly interesting in the context of multi-objective multimodal optimization (MMO). To this end, first a new set of interest, LQϵ, epsilon, is defined. Second, a new unbounded archiver, Archive UpdateLQϵ , epsilon is proposed that aims to capture this set in the limit. Third, several MOEAs are equipped with ArchiveUpdate LQϵ epsilon as external archiver and compared to their archive-free counterparts on selected bench-mark problems. Finally, in order to make a fair comparison of the outcomes in particular for MOPs with a larger number of decision variables, a new performance indicator, I EDR is proposed and used.
Details
| Originalsprache | Englisch |
|---|---|
| Titel | GECCO 2025 Companion - Proceedings of the 2025 Genetic and Evolutionary Computation Conference Companion |
| Redakteure/-innen | Gabriela Ochoa |
| Herausgeber (Verlag) | Association for Computing Machinery, Inc |
| Seiten | 61-62 |
| Seitenumfang | 2 |
| ISBN (elektronisch) | 979-8-4007-1464-1 |
| Publikationsstatus | Veröffentlicht - 11 Aug. 2025 |
| Peer-Review-Status | Ja |
Konferenz
| Titel | 27th Genetic and Evolutionary Computation Conference |
|---|---|
| Kurztitel | GECCO 2025 |
| Veranstaltungsnummer | 27 |
| Dauer | 14 - 18 Juli 2025 |
| Webseite | |
| Ort | NH Málaga & Online |
| Stadt | Málaga |
| Land | Spanien |
Externe IDs
| ORCID | /0000-0003-3929-7465/work/196675850 |
|---|---|
| ORCID | /0000-0003-2862-1418/work/196677919 |
Schlagworte
ASJC Scopus Sachgebiete
Schlagwörter
- Evolutionary Computation, Local Solutions, Multi-modal Optimization, Multi-objective Optimization