From Simple to Complex Skills: The Case of In-Hand Object Reorientation

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Beitragende

Abstract

Learning policies in simulation and transferring them to the real world has become a promising approach in dexterous manipulation. However, bridging the sim-to-real gap for each new task requires substantial human effort, such as careful reward engineering, hyperparameter tuning, and system identification. In this work, we present a system that leverages low-level skills to address these challenges for more complex tasks. Specifically, we introduce a hierarchical policy for in-hand object reorientation based on previously acquired rotation skills. This hierarchical policy learns to select which low-level skill to execute based on feedback from both the environment and the low-level skill policies themselves. Compared to learning from scratch, the hierarchical policy is more robust to out-of-distribution changes and transfers easily from simulation to real-world environments. Additionally, we propose a generalizable object pose estimator that uses proprioceptive information, low-level skill predictions, and control errors as inputs to estimate the object's pose over time. We demonstrate that our system can reorient objects, including symmetrical and textureless ones, to a desired pose.

Details

OriginalspracheEnglisch
Titel2025 IEEE International Conference on Robotics and Automation, ICRA 2025
Redakteure/-innenChristian Ott, Henny Admoni, Sven Behnke, Stjepan Bogdan, Aude Bolopion, Youngjin Choi, Fanny Ficuciello, Nicholas Gans, Clement Gosselin, Kensuke Harada, Erdal Kayacan, H. Jin Kim, Stefan Leutenegger, Zhe Liu, Perla Maiolino, Lino Marques, Takamitsu Matsubara, Anastasia Mavromatti, Mark Minor, Jason O'Kane, Hae Won Park, Hae-Won Park, Ioannis Rekleitis, Federico Renda, Elisa Ricci, Laurel D. Riek, Lorenzo Sabattini, Shaojie Shen, Yu Sun, Pierre-Brice Wieber, Katsu Yamane, Jingjin Yu
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers (IEEE)
Seiten14291-14298
Seitenumfang8
ISBN (elektronisch)979-8-3315-4139-2
PublikationsstatusVeröffentlicht - Sept. 2025
Peer-Review-StatusJa

Konferenz

Titel2025 IEEE International Conference on Robotics and Automation
KurztitelICRA 2025
Dauer19 - 23 Mai 2025
Webseite
BekanntheitsgradInternationale Veranstaltung
OrtGeorgia World Congress Center
StadtAtlanta
LandUSA/Vereinigte Staaten

Externe IDs

ORCID /0000-0001-9430-8433/work/193180316