Federated Learning for Decentralized Artificial Intelligence in Melanoma Diagnostics

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Sarah Haggenmüller - , Deutsches Krebsforschungszentrum (DKFZ) (Autor:in)
  • Max Schmitt - , Deutsches Krebsforschungszentrum (DKFZ) (Autor:in)
  • Eva Krieghoff-Henning - , Deutsches Krebsforschungszentrum (DKFZ) (Autor:in)
  • Achim Hekler - , Deutsches Krebsforschungszentrum (DKFZ) (Autor:in)
  • Roman C. Maron - , Deutsches Krebsforschungszentrum (DKFZ) (Autor:in)
  • Christoph Wies - , Deutsches Krebsforschungszentrum (DKFZ) (Autor:in)
  • Jochen S. Utikal - , Universität Heidelberg, Deutsches Krebsforschungszentrum (DKFZ) (Autor:in)
  • Friedegund Meier - , Klinik und Poliklinik für Dermatologie, Hauttumorzentrum, Nationales Centrum für Tumorerkrankungen Dresden, Universitäts KrebsCentrum Dresden (Autor:in)
  • Sarah Hobelsberger - , Klinik und Poliklinik für Dermatologie, Hauttumorzentrum, Nationales Centrum für Tumorerkrankungen Dresden, Universitäts KrebsCentrum Dresden (Autor:in)
  • Frank F. Gellrich - , Klinik und Poliklinik für Dermatologie, Hauttumorzentrum, Nationales Centrum für Tumorerkrankungen Dresden, Universitäts KrebsCentrum Dresden (Autor:in)
  • Mildred Sergon - , Universitätsklinikum Carl Gustav Carus Dresden (Autor:in)
  • Axel Hauschild - , Universitätsklinikum Schleswig-Holstein Campus Kiel (Autor:in)
  • Lars E. French - , Ludwig-Maximilians-Universität München (LMU), University of Miami Miller School of Medicine (Autor:in)
  • Lucie Heinzerling - , Ludwig-Maximilians-Universität München (LMU), Friedrich-Alexander-Universität Erlangen-Nürnberg (Autor:in)
  • Justin G. Schlager - , Ludwig-Maximilians-Universität München (LMU) (Autor:in)
  • Kamran Ghoreschi - , Charité – Universitätsmedizin Berlin (Autor:in)
  • Max Schlaak - , Charité – Universitätsmedizin Berlin (Autor:in)
  • Franz J. Hilke - , Charité – Universitätsmedizin Berlin (Autor:in)
  • Gabriela Poch - , Charité – Universitätsmedizin Berlin (Autor:in)
  • Sören Korsing - , Charité – Universitätsmedizin Berlin (Autor:in)
  • Carola Berking - , Friedrich-Alexander-Universität Erlangen-Nürnberg (Autor:in)
  • Markus V. Heppt - , Friedrich-Alexander-Universität Erlangen-Nürnberg (Autor:in)
  • Michael Erdmann - , Friedrich-Alexander-Universität Erlangen-Nürnberg (Autor:in)
  • Sebastian Haferkamp - , Universität Regensburg (Autor:in)
  • Konstantin Drexler - , Universität Regensburg (Autor:in)
  • Dirk Schadendorf - , Universität Duisburg-Essen (Autor:in)
  • Wiebke Sondermann - , Universität Duisburg-Essen (Autor:in)
  • Matthias Goebeler - , Julius-Maximilians-Universität Würzburg (Autor:in)
  • Bastian Schilling - , Julius-Maximilians-Universität Würzburg (Autor:in)
  • Jakob N. Kather - , Else Kröner Fresenius Zentrum für Digitale Gesundheit (Autor:in)
  • Stefan Fröhling - , Deutsches Krebsforschungszentrum (DKFZ) (Autor:in)
  • Titus J. Brinker - , Deutsches Krebsforschungszentrum (DKFZ) (Autor:in)

Abstract

Importance: The development of artificial intelligence (AI)-based melanoma classifiers typically calls for large, centralized datasets, requiring hospitals to give away their patient data, which raises serious privacy concerns. To address this concern, decentralized federated learning has been proposed, where classifier development is distributed across hospitals. Objective: To investigate whether a more privacy-preserving federated learning approach can achieve comparable diagnostic performance to a classical centralized (ie, single-model) and ensemble learning approach for AI-based melanoma diagnostics. Design, Setting, and Participants: This multicentric, single-arm diagnostic study developed a federated model for melanoma-nevus classification using histopathological whole-slide images prospectively acquired at 6 German university hospitals between April 2021 and February 2023 and benchmarked it using both a holdout and an external test dataset. Data analysis was performed from February to April 2023. Exposures: All whole-slide images were retrospectively analyzed by an AI-based classifier without influencing routine clinical care. Main Outcomes and Measures: The area under the receiver operating characteristic curve (AUROC) served as the primary end point for evaluating the diagnostic performance. Secondary end points included balanced accuracy, sensitivity, and specificity. Results: The study included 1025 whole-slide images of clinically melanoma-suspicious skin lesions from 923 patients, consisting of 388 histopathologically confirmed invasive melanomas and 637 nevi. The median (range) age at diagnosis was 58 (18-95) years for the training set, 57 (18-93) years for the holdout test dataset, and 61 (18-95) years for the external test dataset; the median (range) Breslow thickness was 0.70 (0.10-34.00) mm, 0.70 (0.20-14.40) mm, and 0.80 (0.30-20.00) mm, respectively. The federated approach (0.8579; 95% CI, 0.7693-0.9299) performed significantly worse than the classical centralized approach (0.9024; 95% CI, 0.8379-0.9565) in terms of AUROC on a holdout test dataset (pairwise Wilcoxon signed-rank, P <.001) but performed significantly better (0.9126; 95% CI, 0.8810-0.9412) than the classical centralized approach (0.9045; 95% CI, 0.8701-0.9331) on an external test dataset (pairwise Wilcoxon signed-rank, P <.001). Notably, the federated approach performed significantly worse than the ensemble approach on both the holdout (0.8867; 95% CI, 0.8103-0.9481) and external test dataset (0.9227; 95% CI, 0.8941-0.9479). Conclusions and Relevance: The findings of this diagnostic study suggest that federated learning is a viable approach for the binary classification of invasive melanomas and nevi on a clinically representative distributed dataset. Federated learning can improve privacy protection in AI-based melanoma diagnostics while simultaneously promoting collaboration across institutions and countries. Moreover, it may have the potential to be extended to other image classification tasks in digital cancer histopathology and beyond.

Details

OriginalspracheEnglisch
Seiten (von - bis)303-311
Seitenumfang9
FachzeitschriftJAMA dermatology
Jahrgang160
Ausgabenummer3
PublikationsstatusVeröffentlicht - 20 März 2024
Peer-Review-StatusJa

Externe IDs

PubMed 38324293
ORCID /0000-0001-5703-324X/work/159605804
ORCID /0000-0003-4340-9706/work/159608226
ORCID /0000-0002-2164-4644/work/159608461

Schlagworte

ASJC Scopus Sachgebiete

Schlagwörter

  • Dermatology, Humans, Artificial Intelligence, Melanoma/diagnosis, Retrospective Studies, Nevus/diagnosis, Skin Neoplasms/diagnosis