Deep learning for interpretable end-to-end survival (E-E Surv) prediction in gastrointestinal cancer histopathology

Publikation: Beitrag in FachzeitschriftKonferenzartikelBeigetragenBegutachtung

Beitragende

  • Narmin Ghaffari Laleh - , Rheinisch-Westfälische Technische Hochschule Aachen (Autor:in)
  • Amelie Echle - , Rheinisch-Westfälische Technische Hochschule Aachen (Autor:in)
  • Hannah Sophie Muti - , Rheinisch-Westfälische Technische Hochschule Aachen (Autor:in)
  • Katherine Jane Hewitt - , Rheinisch-Westfälische Technische Hochschule Aachen (Autor:in)
  • Volkmar Schulz - , Rheinisch-Westfälische Technische Hochschule Aachen, Fraunhofer-Institut für Digitale Medizin MEVIS, Hyperion Hybrid Imaging Systems GmbH (Autor:in)
  • Jakob Nikolas Kather - , Rheinisch-Westfälische Technische Hochschule Aachen, Universität Heidelberg, University of Leeds (Autor:in)

Abstract

Digitized histopathology slides contain a wealth of information, only a fraction of which is being used in clinical routine. Deep learning can extract subtle visual features from digitized slides and thus can infer clinically relevant endpoints from raw image data. While classification and regression methods are well established in this domain, end-to-end prediction of patient survival still remains a comparably novel approach. To account for different follow-up times and censored data, previous approaches have largely used discretized survival data. Here, we demonstrate and validate EE-Surv, a powerful yet algorithmically simple method to predict survival directly from whole slide images which we validate in colorectal and gastric cancer, two clinically relevant and markedly different tumor types. We experimentally show that this method yields a highly significant prediction of survival and enables explainability of predictions. This method is publicly available under an open-source license and can be applied to any type of disease.

Details

OriginalspracheEnglisch
Seiten (von - bis)81-93
Seitenumfang13
FachzeitschriftProceedings of Machine Learning Research
Jahrgang156
PublikationsstatusVeröffentlicht - 2021
Peer-Review-StatusJa
Extern publiziertJa

Konferenz

Titel2021 MICCAI Workshop on Computational Pathology, COMPAY 2021
Dauer27 September 2021
StadtVirtual, Online

Schlagworte

Ziele für nachhaltige Entwicklung

Schlagwörter

  • Convolutional Neural Network, Deep Learning, Digitized Histopathology Images, Survival Prediction, Transfer Learning