Data-Driven Insights-A Machine Learning based EV Charging Behavior Prediction with Heterogeneous Users

Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/GutachtenBeitrag in KonferenzbandBeigetragenBegutachtung

Abstract

Accurate forecasting of electric vehicle (EV) charging demand is essential for smart charging and efficient infrastructure use - particularly in hybrid environments with public access and shift-based internal users. This study introduces a dual-level forecasting framework: we propose a Hybrid Gated Recurrent Units (GRU) model for day-ahead station-level occupancy prediction and evaluate real-time EV-level behavior forecasting using LightGBM (LGBM) and a session similarity (SIMs) approach, enabling both strategic planning and realtime decision-making for efficient EV charging management. At the station level, our model predicts multistep charging station occupancy using behavioral and environmental features. At the EV-level, we forecast plug-in duration and energy consumption based on user-specific trends. Forecasting performance is assessed using both standard and behavior-sensitive metrics to evaluate reliability under real-world conditions. Results show that average metrics often mask behavioral variability and edge-case errors. Our analysis highlights that forecasting accuracy depends more on contextual data quality than on model complexity.

Details

OriginalspracheEnglisch
TitelProceedings - 2025 IEEE 7th Global Power, Energy and Communication Conference, GPECOM 2025
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers (IEEE)
Seiten804-810
Seitenumfang7
ISBN (elektronisch)979-8-3315-1323-8
ISBN (Print)979-8-3315-1324-5
PublikationsstatusVeröffentlicht - 2025
Peer-Review-StatusJa

Publikationsreihe

ReiheGlobal Power, Energy and Communication Conference (GPECOM)
ISSN2832-7675

Konferenz

Titel7th Global Power, Energy and Communication Conference
KurztitelGPECOM 2025
Veranstaltungsnummer7
Dauer11 - 13 Juni 2025
Webseite
OrtMercure Hotel Bochum City
StadtBochum
LandDeutschland

Externe IDs

ORCID /0000-0001-8469-9573/work/188860177

Schlagworte

Ziele für nachhaltige Entwicklung

Schlagwörter

  • Behavior Prediction, EV Charging, Hybrid GRU, LightGBM, Occupancy Forecasting, Similarity Model