An Immersive Labeling Method for Large Point Clouds
Publikation: Beitrag in Buch/Konferenzbericht/Sammelband/Gutachten › Beitrag in Konferenzband › Beigetragen › Begutachtung
Beitragende
Abstract
3D point clouds often require accurate labeling and semantic information. However, in the absence of fully automated methods, such labeling must be performed manually, which can prove extremely time and labour intensive. To address this, we propose a novel hybrid CPU/GPU-based algorithm allowing instantaneous selection and modification of points supporting very large point clouds. Our tool provides a palette of 3D interactions for efficient viewing, selection and labeling of points using head-mounted VR and controllers. We evaluate our method with 25 users on tasks involving large point clouds and find convincing results that support the use case of VR-based point cloud labeling.
Details
Originalsprache | Englisch |
---|---|
Titel | Proceedings - 2023 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops, VRW 2023 |
Herausgeber (Verlag) | IEEE |
Seitenumfang | 2 |
ISBN (elektronisch) | 979-8-3503-4839-2 |
ISBN (Print) | 979-8-3503-4840-8 |
Publikationsstatus | Veröffentlicht - März 2023 |
Peer-Review-Status | Ja |
Externe IDs
Scopus | 85159719587 |
---|---|
Mendeley | 0c5a3213-e3f5-31b9-9a2b-21b883e5089c |
ORCID | /0000-0002-3671-1619/work/142248366 |
Schlagworte
Forschungsprofillinien der TU Dresden
DFG-Fachsystematik nach Fachkollegium
Fächergruppen, Lehr- und Forschungsbereiche, Fachgebiete nach Destatis
ASJC Scopus Sachgebiete
Schlagwörter
- Human-centered computing, Immersive interaction, Immersive labeling, Virtual Reality