A sustainable CVD approach for ZrN as a potential catalyst for nitrogen reduction reaction

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Jean Pierre Glauber - , Ruhr-Universität Bochum (Autor:in)
  • Julian Lorenz - , Deutsches Zentrum für Luft- und Raumfahrt (DLR) e.V. (Autor:in)
  • Ji Liu - , University College Cork (Autor:in)
  • Björn Müller - , Carl von Ossietzky Universität Oldenburg (Autor:in)
  • Sebastian Bragulla - , Deutsches Zentrum für Luft- und Raumfahrt (DLR) e.V., Universität Stuttgart (Autor:in)
  • Aleksander Kostka - , Ruhr-Universität Bochum (Autor:in)
  • Detlef Rogalla - , Ruhr-Universität Bochum (Autor:in)
  • Michael Wark - , Carl von Ossietzky Universität Oldenburg (Autor:in)
  • Michael Nolan - , University College Cork (Autor:in)
  • Corinna Harms - , Deutsches Zentrum für Luft- und Raumfahrt (DLR) e.V. (Autor:in)
  • Anjana Devi - , Professur für Materialchemie (gB/IFW), Ruhr-Universität Bochum, Leibniz-Institut für Festkörper- und Werkstoffforschung Dresden (Autor:in)

Abstract

In pursuit of developing alternatives for the highly polluting Haber-Bosch process for ammonia synthesis, the electrocatalytic nitrogen reduction reaction (NRR) using transition metal nitrides such as zirconium mononitride (ZrN) has been identified as a potential pathway for ammonia synthesis. In particular, specific facets of ZrN have been theoretically described as potentially active and selective for NRR. Major obstacles that need to be addressed include the synthesis of tailored catalyst materials that can activate the inert dinitrogen bond while suppressing hydrogen evolution reaction (HER) and not degrading during electrocatalysis. To tackle these challenges, a comprehensive understanding of the influence of the catalyst's structure, composition, and morphology on the NRR activity is required. This motivates the use of metal-organic chemical vapor deposition (MOCVD) as the material synthesis route as it enables catalyst nanoengineering by tailoring the process parameters. Herein, we report the fabrication of oriented and facetted crystalline ZrN thin films employing a single source precursor (SSP) MOCVD approach on silicon and glassy carbon (GC) substrates. First principles density functional theory (DFT) simulations elucidated the preferred decomposition pathway of SSP, whereas ab initio molecular dynamics simulations show that ZrN at room temperature undergoes surface oxidation with ambient O2, yielding a Zr-O-N film, which is consistent with compositional analysis using Rutherford backscattering spectrometry (RBS) in combination with nuclear reaction analysis (NRA) and X-ray photoelectron spectroscopy (XPS) depth profiling. Proof-of-principle electrochemical experiments demonstrated the applicability of the developed ZrN films on GC for NRR and qualitatively hint towards a possible activity for the electrochemical NRR in the sulfuric acid electrolyte.

Details

OriginalspracheEnglisch
Seiten (von - bis)15451-15464
Seitenumfang14
FachzeitschriftDalton transactions
Jahrgang53
Ausgabenummer37
PublikationsstatusVeröffentlicht - 4 Juli 2024
Peer-Review-StatusJa

Externe IDs

PubMed 39037344

Schlagworte

ASJC Scopus Sachgebiete