A FeFET with a novel MFMFIS gate stack: Towards energy-efficient and ultrafast NVMs for neuromorphic computing

Publikation: Beitrag in FachzeitschriftForschungsartikelBeigetragenBegutachtung

Beitragende

  • Tarek Ali - , Fraunhofer-Institut für Photonische Mikrosysteme (Autor:in)
  • Konstantin Mertens - , Fraunhofer-Institut für Photonische Mikrosysteme (Autor:in)
  • Kati Kühnel - , Fraunhofer-Institut für Photonische Mikrosysteme (Autor:in)
  • Matthias Rudolph - , Fraunhofer-Institut für Photonische Mikrosysteme (Autor:in)
  • Sebastian Oehler - , Fraunhofer-Institut für Photonische Mikrosysteme (Autor:in)
  • David Lehninger - , Fraunhofer-Institut für Photonische Mikrosysteme (Autor:in)
  • Franz Müller - , Fraunhofer-Institut für Photonische Mikrosysteme (Autor:in)
  • Ricardo Revello - , Fraunhofer-Institut für Photonische Mikrosysteme (Autor:in)
  • Raik Hoffmann - , Fraunhofer-Institut für Photonische Mikrosysteme (Autor:in)
  • Katrin Zimmermann - , Fraunhofer-Institut für Photonische Mikrosysteme (Autor:in)
  • Thomas Kämpfe - , Fraunhofer-Institut für Photonische Mikrosysteme (Autor:in)
  • Malte Czernohorsky - , Fraunhofer-Institut für Photonische Mikrosysteme (Autor:in)
  • Konrad Seidel - , Fraunhofer-Institut für Photonische Mikrosysteme (Autor:in)
  • Jan van Houdt - , Interuniversitair Micro-Elektronica Centrum, KU Leuven (Autor:in)
  • Lukas M. Eng - , Exzellenzcluster ct.qmat: Komplexität und Topologie in Quantenmaterialien, Professur für Experimentalphysik/Photophysik, Technische Universität Dresden (Autor:in)

Abstract

The discovery of ferroelectricity in the fluorite structure based hafnium oxide (HfO2) material sparked major efforts for reviving the ferroelectric field effect transistor (FeFET) memory concept. A Novel metal-ferroelectric-metal-ferroelectric-insulator-semiconductor (MFMFIS) FeFET memory is reported based on dual ferroelectric integration as an MFM and MFIS in a single gate stack using Si-doped Hafnium oxide (HSO) ferroelectric (FE) material. The MFMFIS top and bottom electrode contacts, dual HSO based ferroelectric layers, and tailored MFM to MFIS area ratio (AR-TB) provide a flexible stack structure tuning for improving the FeFET performance. The AR-TB tuning shows a tradeoff between the MFM voltage increase and the weaker FET Si channel inversion, particularly notable in the drain saturation current ID(sat) when the AR-TB ratio decreases. Dual HSO ferroelectric layer integration enables a maximized memory window (MW) and dynamic control of its size by tuning the MFM to MFIS switching contribution through the AR-TB change. The stack structure control via the AR-TB tuning shows further merits in terms of a low voltage switching for a saturated MW size, an extremely linear at wide dynamic range of the current update, as well as high symmetry in the long term synaptic potentiation and depression. The MFMFIS stack reliability is reported in terms of the switching variability, temperature dependence, endurance, and retention. The MFMFIS concept is thoroughly discussed revealing profound insights on the optimal MFMFIS stack structure control for enhancing the FeFET memory performance.

Details

OriginalspracheEnglisch
Aufsatznummer425201
FachzeitschriftNanotechnology
Jahrgang32
Ausgabenummer42
Frühes Online-Datum29 Juli 2021
PublikationsstatusVeröffentlicht - 15 Okt. 2021
Peer-Review-StatusJa

Externe IDs

PubMed 34261048
ORCID /0000-0002-2484-4158/work/142257587

Schlagworte

Schlagwörter

  • FeFET, Ferroelectric, Hafnium oxide, MFMFIS, Neuromorphic, Synaptic device