Skip to content Skip to footer

Related content

Comparing gait parameters for right-convex scoliosis patients with and without brace

Tschirschky, A., Jochim, T., Heinke, A., Żurawski, A. Ł., Kiebzak, W. & Malberg, H., Dec 2024, AUTOMED 2024 Proceedings: Advances in Automation and Control in Medical Technology. p. 9-10 2 p. 5

Research output: Contribution to book/Conference proceedings/Anthology/ReportConference contributionContributedpeer-review

Differentiating between structural and functional spinal deformities in children and adolescents using machine learning

Jochim, T., Żurawski, A. Ł., Stecher, N., Heinke, A., Kiebzak, W. & Malberg, H., Dec 2024, AUTOMED 2024 Proceedings: Advances in Automation and Control in Medical Technology. p. 21-22 2 p. 11

Research output: Contribution to book/Conference proceedings/Anthology/ReportConference contributionContributedpeer-review

Using machine learning algorithms to detect fear of falling in people with multiple sclerosis in standardized gait analysis

Schumann, P., Trentzsch, K., Stölzer-Hutsch, H., Jochim, T., Scholz, M., Malberg, H. & Ziemssen, T., Aug 2024, In: Multiple sclerosis and related disorders. 88 (2024), 7 p., 105721.

Research output: Contribution to journalResearch articleContributedpeer-review

Torsobarography: Intra-Observer Reliability Study of a Novel Posture Analysis Based on Pressure Distribution

Stecher, N., Heinke, A., Żurawski, A. Ł., Harder, M. R., Schumann, P., Jochim, T. & Malberg, H., 24 Jan 2024, In: Sensors. 24, 3, 768.

Research output: Contribution to journalResearch articleContributedpeer-review

Detection of Fall Risk in Multiple Sclerosis by Gait Analysis—An Innovative Approach Using Feature Selection Ensemble and Machine Learning Algorithms

Schumann, P., Scholz, M., Trentzsch, K., Jochim, T., Śliwiński, G., Malberg, H. & Ziemssen, T., Nov 2022, In: Brain sciences. 12, 11, 1477.

Research output: Contribution to journalResearch articleContributedpeer-review