Visualization of ligand-induced transmembrane signaling in the full-length human insulin receptor

Research output: Contribution to journalResearch articleContributedpeer-review

Contributors

Abstract

Insulin receptor (IR) signaling plays a critical role in the regulation of metabolism and growth in multicellular organisms. IRs are unique among receptor tyrosine kinases in that they exist exclusively as covalent (aβ)2 homodimers at the cell surface. Transmembrane signaling by the IR can therefore not be based on ligand-induced dimerization as such but must involve structural changes within the existing receptor dimer. In this study, using glycosylated full-length human IR reconstituted into lipid nanodiscs, we show by single-particle electron microscopy that insulin binding to the dimeric receptor converts its ectodomain from an inverted U-shaped conformation to a T-shaped conformation. This structural rearrangement of the ectodomain propagates to the transmembrane domains, which are well separated in the inactive conformation but come close together upon insulin binding, facilitating autophosphorylation of the cytoplasmic kinase domains.

Details

Original languageEnglish
Pages (from-to)1643-1649
Number of pages7
JournalThe Journal of cell biology
Volume217
Issue number5
Publication statusPublished - 1 May 2018
Peer-reviewedYes

External IDs

Scopus 85045143065
PubMed 29453311
ORCID /0000-0003-2083-0506/work/148607258

Keywords

ASJC Scopus subject areas

Library keywords