Virtual Elements for computational anisotropic crystal plasticity

Research output: Contribution to journalResearch articleContributedpeer-review

Contributors

  • Christoph Böhm - , Leibniz University Hannover (LUH) (Author)
  • Lukas Munk - , Chair of Construction Mechanics, Leibniz University Hannover (LUH) (Author)
  • Blaž Hudobivnik - , Leibniz University Hannover (LUH) (Author)
  • Fadi Aldakheel - , Leibniz University Hannover (LUH), Swansea University (Author)
  • Jože Korelc - , University of Ljubljana (Author)
  • Peter Wriggers - , Leibniz University Hannover (LUH) (Author)

Abstract

In this contribution, the Virtual Element Method (VEM) with a linear ansatz is applied to a computational crystal plasticity framework in a micro-structural environment. Furthermore, a simple anisotropic energetic contribution, based on invariant-formulations of tensorial deformation measures and structural tensors, is presented for the cubic elastic anisotropy of the underlying crystal structure. The anisotropic elastic formulation recovers the elasticity tensor structure of a cubic material in the limit of small deformations. The authors propose a new stabilization degradation formulation which is purely based on the dissipative response of the problem. Representative examples illustrate the robustness and performance of VEM with regard to locking phenomena in the crystal plasticity framework, when bench-marked against the solutions of classical finite element approaches. Further examples investigate the performance and current limitations of VEM within a crystal plasticity framework, when being applied to heterogeneous microstructures for both, structured element topology as well as flexible element topology.

Details

Original languageEnglish
Article number115835
JournalComputer methods in applied mechanics and engineering
Volume405
Publication statusPublished - 15 Feb 2023
Peer-reviewedYes

Keywords

Keywords

  • AceGen, Crystal plasticity, Crystalline microstructure, Cubic anisotropy, Finite deformation, Virtual element method (VEM)