Using internal strain and mass to modulate Dy⋯Dy coupling and relaxation of magnetization in heterobimetallic metallofullerenes DyM2N@C80 and Dy2MN@C80 (M = Sc, Y, La, Lu)

Research output: Contribution to journalResearch articleContributedpeer-review

Contributors

  • Yajuan Hao - , Leibniz Institute for Solid State and Materials Research Dresden, Pingdingshan University (Author)
  • Georgios Velkos - , Chair of Experimental Solid State Physics, Leibniz Institute for Solid State and Materials Research Dresden (Author)
  • Sandra Schiemenz - , Leibniz Institute for Solid State and Materials Research Dresden (Author)
  • Marco Rosenkranz - , Leibniz Institute for Solid State and Materials Research Dresden (Author)
  • Yaofeng Wang - , Chair of Inorganic Molecular Chemistry, Leibniz Institute for Solid State and Materials Research Dresden (Author)
  • Bernd Büchner - , Chair of Experimental Solid State Physics, Leibniz Institute for Solid State and Materials Research Dresden (Author)
  • Stanislav M. Avdoshenko - , Leibniz Institute for Solid State and Materials Research Dresden (Author)
  • Alexey A. Popov - , Leibniz Institute for Solid State and Materials Research Dresden (Author)
  • Fupin Liu - , Leibniz Institute for Solid State and Materials Research Dresden (Author)

Abstract

Endohedral clusters inside metallofullerenes experience considerable inner strain when the size of the hosting cage is comparably small. This strain can be tuned in mixed-metal metallofullerenes by combining metals of different sizes. Here we demonstrate that the internal strain and mass can be used as variables to control Dy⋯Dy coupling and relaxation of magnetization in Dy-metallofullerenes. Mixed-metal nitride clusterfullerenes DyxY3−xN@Ih-C80 (x = 0-3) and Dy2LaN@Ih-C80 combining Dy with diamagnetic rare-earth elements, Y and La, were synthesized and characterized by single-crystal X-ray diffraction, SQUID magnetometry, ab initio calculations, and spectroscopic techniques. DyxY3−xN clusters showed a planar structure, but the slightly larger size of Dy3+ in comparison with that of Y3+ resulted in increased elongation of the nitrogen thermal ellipsoid, showing enhancement of the out-of-plane vibrational amplitude. When Dy was combined with larger La, the Dy2LaN cluster appeared strongly pyramidal with the distance between two nitrogen sites of 1.15(1) Å, whereas DyLa2N@C80 could not be obtained in a separable yield. Magnetic studies revealed that the relaxation of magnetization and blocking temperature of magnetization in the DyM2N@C80 series (M = Sc, Y, Lu) correlated with the mass of M, with DySc2N@C80 showing the fastest and DyLu2N@C80 the slowest relaxation. Ab initio calculations predicted very similar g-tensors for Dy3+ ground state pseudospin in all studied DyM2N@C80 molecules, suggesting that the variation in relaxation is caused by different vibrational spectra of these compounds. In the Dy2MN@C80 series (M = Sc, Y, La, Lu), the magnetic and hysteretic behavior was found to correlate with Dy⋯Dy coupling, which in turn appears to depend on the size of M3+. Across the Dy2MN@C80 series, the energy difference between ferromagnetic and antiferromagnetic states changes from 5.6 cm−1 in Dy2ScN@C80 to 3.0 cm−1 in Dy2LuN@C80, 1.0 cm−1 in Dy2YN@C80, and −0.8 cm−1 in Dy2LaN@C80. The coupling of Dy ions suppresses the zero-field quantum tunnelling of magnetization but opens new relaxation channels, making the relaxation rate dependent on the coupling strengths.

Details

Original languageEnglish
Pages (from-to)468-484
Number of pages17
JournalInorganic chemistry frontiers
Volume10
Issue number2
Publication statusPublished - 17 Nov 2022
Peer-reviewedYes

Keywords

ASJC Scopus subject areas