Use of a novel collagen matrix with oriented pore structure for muscle cell differentiation in cell culture and in grafts

Research output: Contribution to journalResearch articleContributedpeer-review

Contributors

  • Volker Kroehne - , Chair of Molecular Developmental Genetics, Bielefeld University (First author)
  • Ingo Heschel - , Matricel GmbH (Author)
  • F Schügner - , Matricel GmbH (Author)
  • D Lasrich - , Bielefeld University (Author)
  • J W Bartsch - , Bielefeld University (Author)
  • H Jockusch - , Bielefeld University (Author)

Abstract

Tissue engineering of skeletal muscle from cultured cells has been attempted using a variety of synthetic and natural macromolecular scaffolds. Our study describes the application of artificial scaffolds (collagen sponges, CS) consisting of collagen-I with parallel pores (width 20-50 microm) using the permanent myogenic cell line C(2)C(12). CS were infiltrated with a high-density cell suspension, incubated in medium for proliferation of myoblasts prior to further culture in fusion medium to induce differentiation and formation of multinucleated myotubes. This resulted in a parallel arrangement of myotubes within the pore structures. CS with either proliferating cells or with myotubes were grafted into the beds of excised anterior tibial muscles of immunodeficient host mice. The recipient mice were transgenic for enhanced green fluorescent protein (eGFP) to determine a host contribution to the regenerated muscle tissue. Histological analysis 14-50 days after surgery showed that donor muscle fibres had formed in situ with host contributions in the outer portions of the regenerates. The function of the regenerates was assessed by direct electrical stimulation which resulted in the generation of mechanical force. Our study demonstrated that biodegradable CS with parallel pores support the formation of oriented muscle fibres and are compatible with force generation in regenerated muscle.

Details

Original languageEnglish
Pages (from-to)1640-8
Number of pages9
JournalJournal of Cellular and Molecular Medicine
Volume12
Issue number5A
Publication statusPublished - 16 Jan 2008
Peer-reviewedYes

External IDs

PubMedCentral PMC2680279
Scopus 52149113244
ORCID /0000-0002-5610-0866/work/142239961

Keywords

Keywords

  • Animals, Cell Differentiation/drug effects, Cell Line, Collagen/pharmacology, Mice, Mice, Inbred C57BL, Microscopy, Electron, Scanning, Muscle Cells/cytology, Porosity, Prostheses and Implants