Ultrasound Imaging in Hot Melts with Time Reversal Virtual Arrays
Research output: Contribution to book/Conference proceedings/Anthology/Report › Conference contribution › Contributed › peer-review
Contributors
Abstract
Industrial processes, such as silicon crystal growth for the photovoltaics industry, continuous steel casting, plastics and aluminum extrusion, involve hot, opaque liquids. Noninvasive inline monitoring is desirable to improve the quality of the products and the resource efficiency of the process. However, ultrasound-based imaging methods are severely limited by the transducer's resistance to high temperatures.We propose a method for imaging hot liquids using an ultrasound phased-array probe attached to a multi-mode waveguide (MMWG) for thermal decoupling. The complex wave propagation through the MMWG leads to a strongly distorted image, which is addressed with a time reversal virtual array (TRVA). The TRVA method performs a system identification and compensates the distortions based on the time-reversal invariance of sound propagation. We demonstrate planar imaging with this method in liquid tin at ≈ 300°C, well above the destruction limit of the transducers. The characterization of the imaging properties of the system showed a spatial resolution better than 1.6 mm.The proposed method for imaging through MMWG may open a new window into a variety of technical and industrial processes involving hot, opaque liquids in harsh environments.
Details
| Original language | English |
|---|---|
| Title of host publication | 2019 IEEE International Ultrasonics Symposium, IUS 2019 |
| Publisher | IEEE Computer Society |
| Pages | 1051-1053 |
| Number of pages | 3 |
| ISBN (electronic) | 978-1-7281-4596-9 |
| Publication status | Published - Oct 2019 |
| Peer-reviewed | Yes |
Publication series
| Series | IEEE International Ultrasonics Symposium, IUS |
|---|---|
| Volume | 2019-October |
| ISSN | 1948-5719 |
Symposium
| Title | 2019 IEEE International Ultrasonics Symposium |
|---|---|
| Abbreviated title | IUS 2019 |
| Duration | 6 - 9 October 2019 |
| Website | |
| Degree of recognition | International event |
| Location | Scottish Event Campus (SEC) |
| City | Glasgow |
| Country | United Kingdom |
External IDs
| ORCID | /0000-0002-3295-0727/work/186180952 |
|---|
Keywords
Sustainable Development Goals
ASJC Scopus subject areas
Keywords
- computational ultrasound, in-process monitoring, liquid metals, multi mode waveguides, time reversal, TRVA