Two-dimensional materials for miniaturized energy storage devices: from individual devices to smart integrated systems

Research output: Contribution to journalReview articleContributedpeer-review

Abstract

Nowadays, the increasing requirements of portable, implantable, and wearable electronics have greatly stimulated the development of miniaturized energy storage devices (MESDs). Electrochemically active materials and microfabrication techniques are two indispensable parts in MESDs. Particularly, the architecture design of microelectrode arrays is beneficial to the accessibility of two-dimensional (2D) active materials. Therefore, this study reviews the recent advancements in microbatteries and microsupercapacitors based on electrochemically active 2D materials. Emerging microfabrication strategies enable the precise control over the thickness, homogeneity, structure, and dimension in miniaturized devices, which offer tremendous opportunities for achieving both high energy and power densities. Furthermore, smart functions and integrated systems are discussed in detail in light of the emergence of intelligent and interactive modes. Finally, future developments, opportunities, and urgent challenges related to 2D materials, device fabrications, smart responsive designs, and microdevice integrations are provided.

Details

Original languageEnglish
Pages (from-to)7426-7451
Number of pages26
JournalChemical Society reviews
Volume47
Issue number19
Publication statusPublished - 7 Oct 2018
Peer-reviewedYes

External IDs

PubMed 30206606

Keywords

ASJC Scopus subject areas