Tuning the dispersion of 4f bands in the heavy-fermion material YbRh2Si2

Research output: Contribution to journalResearch articleContributedpeer-review

Contributors

  • Denis V. Vyalikh - , Chair of Surface Physics (Author)
  • Steffen Danzenbaecher - , Chair of Surface Physics (Author)
  • Cornelius Krellner - , Max Planck Society, Social Neurosci Lab (Author)
  • Kurt Kummer - , TUD Dresden University of Technology (Author)
  • Christoph Geibel - , Max Planck Society, Social Neurosci Lab (Author)
  • Yuri Kucherenko - , National Academy of Sciences of Ukraine (Author)
  • Clemens Laubschat - , Chair of Surface Physics (Author)
  • Ming Shi - , Paul Scherrer Institute (Author)
  • Luc Patthey - , Paul Scherrer Institute (Author)
  • Rolf Follath - , Helmholtz-Zentrum Dresden-Rossendorf (Author)
  • Serguei L. Molodtsov - , TUD Dresden University of Technology (Author)

Abstract

Localized Yb 4f and itinerant Rh 4d states are subject to substantial hybridization effects in the heavy-fermion material YbRh2Si2. The proximity to the Fermi level and the high anisotropy in k space naturally raise questions regarding the role of these hybridization effects for the observed, unusual physical properties. Using angle-resolved photoemission spectroscopy (ARPES) we found that the non-dispersive behavior of the localized Yb f states is broken around the Gamma point due to interaction with approaching Rh 4d bands. The intriguing point here is that the hybridization strength turns out to be systematically tunable by electron doping of the material. Gradual deposition of silver atoms onto the atomically clean, silicon terminated surface of YbRh2Si2 leads to transfer of Ag 5s charge into the Rh 4d bands. This substantially changes the energy overlap, and thus the hybridization strength, between the interacting Yb 4f and Rh 4d bands in the surface and subsurface region. The shown possibility to control the variation of the f-d hybridization at the surface of heavy-fermion materials may also be helpful for other ARPES studies on the diverse phenomena in electron-correlated materials. (C) 2010 Elsevier B.V. All rights reserved.

Details

Original languageEnglish
Pages (from-to)70-75
Number of pages6
JournalJournal of electron spectroscopy and related phenomena
Volume181
Issue number1
Publication statusPublished - Jul 2010
Peer-reviewedYes

Workshop

TitleInternational Workshop on Strong Correlations and Angle-Resolved Photoemission Spectroscopy
Abbreviated titleCORPES09
Duration19 - 24 July 2009
Degree of recognitionInternational event
CityZürich
CountrySwitzerland

External IDs

Scopus 77955416888

Keywords

Keywords

  • Arpes, Heavy-fermion material, YbRh2Si2, F-d hybridization