Tumour irradiation in mice with a laser-accelerated proton beam

Research output: Contribution to journalResearch articleContributedpeer-review

Contributors

Abstract

Recent oncological studies identified beneficial properties of radiation applied at ultrahigh dose rates, several orders of magnitude higher than the clinical standard of the order of Gy min–1. Sources capable of providing these ultrahigh dose rates are under investigation. Here we show that a stable, compact laser-driven proton source with energies greater than 60 MeV enables radiobiological in vivo studies. We performed a pilot irradiation study on human tumours in a mouse model, showing the concerted preparation of mice and laser accelerator, dose-controlled, tumour-conform irradiation using a laser-driven as well as a clinical reference proton source, and the radiobiological evaluation of irradiated and unirradiated mice for radiation-induced tumour growth delay. The prescribed homogeneous dose of 4 Gy was precisely delivered at the laser-driven source. The results demonstrate a complete laser-driven proton research platform for diverse user-specific small animal models, able to deliver tunable single-shot doses up to around 20 Gy to millimetre-scale volumes on nanosecond timescales, equivalent to around 109 Gy s–1, spatially homogenized and tailored to the sample. The platform provides a unique infrastructure for translational research with protons at ultrahigh dose rates.

Details

Original languageEnglish
Pages (from-to)316-322
Number of pages7
JournalNature physics
Volume18
Issue number3
Publication statusPublished - Mar 2022
Peer-reviewedYes

External IDs

ORCID /0000-0003-1899-603X/work/147142595
ORCID /0000-0003-4261-4214/work/147143119

Keywords

ASJC Scopus subject areas