Transparent, thermally stable light-emitting component comprising organic layers
Research output: Intellectual property › Patent application/Patent
Contributors
Abstract
The invention relates to a thermally stable, high efficient, transparent light-emitting component, which comprises organic layers, is run at low operating voltages and is simple to produce. The aim of the invention is to disclose a completely transparent (>70% transmission) organic light-emitting diode, which can be operated at a reduced operating voltage and is highly efficient at emitting light. To achieve this, according to the invention the hole transport layer adjacent to the anode is p-doped with a stable, acceptor-type organic molecular material with a high molecular mass, which leads to an increased hole conductivity in the doped layer, in comparison with the non-doped layer. Similarly, the electron injection layer adjacent to the cathode is n-doped with a stable, donor-type molecule with a high molecular mass and exhibits a significantly increased electron conductivity. Both doped layers can be thicker in the component than is possible with non-doped layers, without causing an increase in the operating voltage. This permits layers that are arranged below in particular the light-emitting layers, to be protected against damage during the production process, (sputter process), of the transparent electrode (e.g. ITO).
Details
The invention relates to a thermally stable, high efficient, transparent light-emitting component, which comprises organic layers, is run at low operating voltages and is simple to produce. The aim of the invention is to disclose a completely transparent (>70% transmission) organic light-emitting diode, which can be operated at a reduced operating voltage and is highly efficient at emitting light. To achieve this, according to the invention the hole transport layer adjacent to the anode is p-doped with a stable, acceptor-type organic molecular material with a high molecular mass, which leads to an increased hole conductivity in the doped layer, in comparison with the non-doped layer. Similarly, the electron injection layer adjacent to the cathode is n-doped with a stable, donor-type molecule with a high molecular mass and exhibits a significantly increased electron conductivity. Both doped layers can be thicker in the component than is possible with non-doped layers, without causing an increase in the operating voltage. This permits layers that are arranged below in particular the light-emitting layers, to be protected against damage during the production process, (sputter process), of the transparent electrode (e.g. ITO).
Original language | English |
---|---|
IPC (International Patent Classification) | H01L 51/ 30 A N |
Patent number | US2006033115 |
Country/Territory | Germany |
Priority date | 27 Mar 2003 |
Priority number | WO2003DE01021 |
Publication status | Published - 16 Feb 2006 |