Titanium dioxide nanoparticles embedded in assembled dipeptide hydrogels for microfluidic photodegradation
Research output: Contribution to journal › Research article › Contributed › peer-review
Contributors
Abstract
Dipeptides can be self-assembled via non-covalent bonds towards functional nanostructures for diverse applications in nanotechnology. Here, we introduce a convenient microfluidics-guided dipeptide design as a platform for photodegradation of contaminants in water. Titanium dioxide (TiO2) nanoparticles (NPs) are chosen as photocatalysts due to their vastly studied properties. By using a well-defined microchannel architecture, the dipeptide N-fluorenylmethoxycarbonyl diphenylalanine (Fmoc-FF) and TiO2 NPs are efficiently mixed leading to a self-assembled Fmoc-FF hydrogel with embedded TiO2. Owing to shear-thinning and rapid self-healing of Fmoc-FF hydrogels, we can transfer and inject Fmoc-FF/TiO2 hydrogels into any other microdevice for specific applications, where these low-molecular-weight-gelator- (LMWG-)based Fmoc-FF hydrogels fill out the microchannel volume. Different morphologies of Fmoc-FF/TiO2 hydrogels are obtained by simple concentration screening of TiO2 NPs and Fmoc-FF. Owing to the density of the three-dimensionally twined Fmoc-FF nanofibers, solutions swelling the dipeptide hydrogel can be exchanged without leaching out TiO2 NPs. By further analysis, our hydrogel-filled flow cell can be employed for continuous-flow photodegradation in water under light irradiation. Especially, compared to the TiO2 NPs suspension, Fmoc-FF/TiO2 hydrogels with relatively low concentrations of TiO2 exhibit enhanced photodegradation capabilities due to better dispersion of nanoparticles. Such strategy provides a versatile platform for embedment of small inorganic catalysts or enzymes for (bio-)chemical conversion of solutes passing through the hydrogel network.
Details
Original language | English |
---|---|
Pages (from-to) | 405-412 |
Number of pages | 8 |
Journal | Journal of colloid and interface science |
Volume | 654 |
Publication status | Published - 15 Jan 2024 |
Peer-reviewed | Yes |
External IDs
PubMed | 37852026 |
---|
Keywords
ASJC Scopus subject areas
Keywords
- Dipeptide, Hydrogel, Nanotechnology, Self-assembly, Supramolecular assembly