Time delay in the quadrupole field of a body at rest in the 2PN approximation

Research output: Contribution to journalResearch articleContributedpeer-review

Contributors

Abstract

The time delay of a light signal in the quadrupole field of a body at rest is determined in the second post-Newtonian (2PN) approximation in harmonic coordinates. For grazing light rays at the Sun, Jupiter, and Saturn the 2PN quadrupole effect in time delay amounts up to 0.004, 0.14, and 0.04 picosecond, respectively. These values are compared with the time delay in the first post-Newtonian (1PN and 1.5PN) approximation, where it turns out that only the first eight mass multipoles and the spin dipole of these massive bodies are required for a given goal accuracy of 0.001 picosecond in time delay measurements in the solar system. In addition, the spin-hexapole of Jupiter is required on that scale of accuracy.

Details

Original languageEnglish
Article number104052
JournalPhysical review d
Volume106
Issue number10
Publication statusPublished - 15 Nov 2022
Peer-reviewedYes

Keywords

ASJC Scopus subject areas