Theoretical Description of Pump-Probe Experiments in Charge-Density-Wave Materials out to Long Times

Research output: Contribution to journalResearch articleContributedpeer-review

Contributors

Abstract

We describe coupled nonequilibrium electron-phonon systems semiclassically - Ehrenfest dynamics for the phonons and quantum mechanics for the electrons - using a classical Monte Carlo approach that determines the nonequilibrium response to a large pump field. The semiclassical approach is expected to be accurate, because the phonons are excited to average energies much higher than the phonon frequency, eliminating the need for a quantum description. The numerical efficiency of this method allows us to perform a self-consistent time evolution out to very long times (tens of picoseconds), enabling us to model pump-probe experiments of a charge-density-wave (CDW) material. Our system is a half-filled, one-dimensional (1D) Holstein chain that exhibits CDW ordering due to a Peierls transition. The chain is subjected to a time-dependent electromagnetic pump field that excites it out of equilibrium, and then a second probe pulse is applied after a time delay. By evolving the system to long times, we capture the complete process of lattice excitation and subsequent relaxation to a new equilibrium, due to an exchange of energy between the electrons and the lattice, leading to lattice relaxation at finite temperatures. We employ an indirect (impulsive) driving mechanism of the lattice by the pump pulse due to the direct driving of the electrons. We identify two driving regimes, where the pump can either cause small perturbations or completely invert the initial CDW order. Our work successfully describes the ringing of the amplitude mode in CDW systems that has long been seen in experiment but never successfully explained by microscopic theory. We also describe the fluence-dependent crossover that inverts the CDW order parameter and changes the phonon dynamics. Finally, we illustrate how this method can examine a number of different types of experiments including photoemission, x-ray diffraction, and two-dimensional (2D) spectroscopy.

Details

Original languageEnglish
Article number031052
JournalPhysical Review X
Volume14
Issue number3
Publication statusPublished - Jul 2024
Peer-reviewedYes

Keywords

ASJC Scopus subject areas