The specificity and topology of chromatin interaction pathways in yeast

Research output: Contribution to journalResearch articleContributedpeer-review

Contributors

  • Tineke L Lenstra - , University Medical Center (UMC) Utrecht (Author)
  • Joris J Benschop - (Author)
  • Taesoo Kim - (Author)
  • Julia M Schulze - (Author)
  • Nathalie A C H Brabers - (Author)
  • Thanasis Margaritis - (Author)
  • Loes A L van de Pasch - (Author)
  • Sebastiaan A A C van Heesch - (Author)
  • Mariel O Brok - (Author)
  • Marian J A Groot Koerkamp - (Author)
  • Cheuk W Ko - (Author)
  • Dik van Leenen - (Author)
  • Katrin Sameith - , University Medical Center (UMC) Utrecht (Author)
  • Sander R van Hooff - (Author)
  • Philip Lijnzaad - (Author)
  • Patrick Kemmeren - (Author)
  • Thomas Hentrich - (Author)
  • Michael S Kobor - (Author)
  • Stephen Buratowski - (Author)
  • Frank C P Holstege - (Author)

Abstract

Packaging of DNA into chromatin has a profound impact on gene expression. To understand how changes in chromatin influence transcription, we analyzed 165 mutants of chromatin machinery components in Saccharomyces cerevisiae. mRNA expression patterns change in 80% of mutants, always with specific effects, even for loss of widespread histone marks. The data are assembled into a network of chromatin interaction pathways. The network is function based, has a branched, interconnected topology, and lacks strict one-to-one relationships between complexes. Chromatin pathways are not separate entities for different gene sets, but share many components. The study evaluates which interactions are important for which genes and predicts additional interactions, for example between Paf1C and Set3C, as well as a role for Mediator in subtelomeric silencing. The results indicate the presence of gene-dependent effects that go beyond context-dependent binding of chromatin factors and provide a framework for understanding how specificity is achieved through regulating chromatin.

Details

Original languageEnglish
Pages (from-to)536-49
Number of pages14
JournalMolecular cell
Volume42
Issue number4
Publication statusPublished - 20 May 2011
Peer-reviewedYes
Externally publishedYes

External IDs

PubMedCentral PMC4435841
Scopus 79955949044
ORCID /0000-0003-4306-930X/work/141545236

Keywords

Keywords

  • Chromatin/metabolism, Gene Expression Regulation, Fungal, Gene Silencing, Histone Deacetylases/metabolism, Histones/metabolism, Mediator Complex/metabolism, Metabolic Networks and Pathways, Nuclear Proteins/metabolism, Saccharomyces cerevisiae/genetics, Saccharomyces cerevisiae Proteins/genetics, Telomere/metabolism, Transcription, Genetic