The potential of δ2Hn-alkanes and δ18Osugar for paleoclimate reconstruction – A regional calibration study for South Africa
Research output: Contribution to journal › Research article › Contributed › peer-review
Contributors
Abstract
The hydrogen isotopic composition of leaf wax-derived n-alkanes (δ2Hn-alkanes) is a widely applied proxy for (paleo)climatic changes. It has been suggested that the coupling with the oxygen isotopic composition of hemicellulose-derived sugars (δ18Osugar) - an approach dubbed ‘paleohygrometer’ – might allow more robust and quantitative (paleo)hydrological reconstructions. However, the paleohygrometer remains to be evaluated and tested regionally. In this study, topsoil samples from South Africa, covering extensive environmental gradients, are analysed. δ2Hn-alkanes correlates significantly with the isotopic composition of precipitation (δ2Hp), whereas no significant correlation exists between δ18Osugar and δ18Op. The apparent fractionation (εapp) is the difference between δ2Hn-alkanes and δ2Hp (εapp 2H) and δ18Osugar and δ18Op (εapp 18O), respectively, and integrates i) isotopic enrichment due to soil water evaporation, ii) leaf (and xylem) water transpiration and iii) biosynthetic fractionation. We find no correlation of εapp 18O nor for εapp 2H with temperature, and no correlation of εapp 2H with potential evapotranspiration and an aridity index. By contrast, εapp 18O correlates significantly with both potential evapotranspiration and the aridity index. This highlights the strong effect of evapotranspirative enrichment on δ18Osugar. In study areas without plant predominance using Crassulacean Acid Metabolism (CAM), coupling δ18Osugar and δ2Hn-alkanes enables to reconstruct δ2Hp and δ18Op with an offset of Δδ2H = 6 ± 27‰ and Δδ18O = 0.8 ± 3.7‰, respectively, as well as relative humidity (RH) with an offset of ΔRH = 6 ± 17%. The paleohygrometer does, however, not work well for our study areas where CAM plants prevail (reconstructed δ18Op, δ2Hp and RH are off by 3.1‰, 27.2‰ and 31.7%). This probably reflects plant-specific (phenological) adaptations and/or post-photosynthetic exchange reactions related to CAM metabolism. Overall, our findings corroborate that δ2Hn-alkanes and δ18Osugar are valuable proxies, and the paleohygrometer is a promising approach for paleoclimate reconstructions in southern Africa.
Details
Original language | English |
---|---|
Article number | 137045 |
Journal | Science of the total environment |
Volume | 716 |
Publication status | Published - 10 May 2020 |
Peer-reviewed | Yes |
External IDs
PubMed | 32059328 |
---|---|
ORCID | /0000-0002-9586-0390/work/170107068 |
Keywords
ASJC Scopus subject areas
Keywords
- Apparent fractionation, Biomarkers, Compound-specific hydrogen isotopes, Compound-specific oxygen isotopes, Hemicellulose sugars, Leaf waxes