The new Felsenkeller 5 MV underground accelerator

Research output: Contribution to conferencesPaperContributedpeer-review

Contributors

  • Daniel Bemmerer - , Helmholtz-Zentrum Dresden-Rossendorf (HZDR) (Author)
  • Thomas E. Cowan - , Chair of Radiation Physics, Helmholtz-Zentrum Dresden-Rossendorf (HZDR) (Author)
  • Alexander Domula - , Chair of Nuclear Physics (Author)
  • Toralf Döring - , Helmholtz-Zentrum Dresden-Rossendorf (HZDR) (Author)
  • Marcel Grieger - , Chair of Nuclear Physics, Helmholtz-Zentrum Dresden-Rossendorf (HZDR) (Author)
  • Sebastian Hammer - , Helmholtz-Zentrum Dresden-Rossendorf (HZDR), TUD Dresden University of Technology (Author)
  • Thomas Hensel - , Chair of Nuclear Physics, Helmholtz-Zentrum Dresden-Rossendorf (HZDR) (Author)
  • Lisa Hübinger - , Department of Nuclear Medicine, Helmholtz-Zentrum Dresden-Rossendorf (HZDR) (Author)
  • Arnd R. Junghans - , Helmholtz-Zentrum Dresden-Rossendorf (HZDR) (Author)
  • Felix Ludwig - , Chair of Nuclear Physics, Helmholtz-Zentrum Dresden-Rossendorf (HZDR) (Author)
  • Stefan E. Müller - , Helmholtz-Zentrum Dresden-Rossendorf (HZDR) (Author)
  • Stefan Reinicke - , Chair of Nuclear Physics, Helmholtz-Zentrum Dresden-Rossendorf (HZDR) (Author)
  • Bernd Rimarzig - , Helmholtz-Zentrum Dresden-Rossendorf (HZDR) (Author)
  • Konrad Schmidt - , Chair of Nuclear Physics (Author)
  • Ronald Schwengner - , Helmholtz-Zentrum Dresden-Rossendorf (HZDR) (Author)
  • Klaus Stöckel - , Chair of Nuclear Physics, Helmholtz-Zentrum Dresden-Rossendorf (HZDR) (Author)
  • Tamás Szücs - , Helmholtz-Zentrum Dresden-Rossendorf (HZDR) (Author)
  • Steffen Turkat - , Chair of Nuclear Physics (Author)
  • Andreas Wagner - , Helmholtz-Zentrum Dresden-Rossendorf (HZDR) (Author)
  • Louis Wagner - , Chair of Nuclear Physics, Helmholtz-Zentrum Dresden-Rossendorf (HZDR) (Author)
  • Kai Zuber - , Chair of Nuclear Physics (Author)

Abstract

The field of nuclear astrophysics is devoted to the study of the creation of the chemical elements. By nature, it is deeply intertwined with the physics of the Sun. The nuclear reactions of the proton-proton cycle of hydrogen burning, including the 3He(α,γ)7Be reaction, provide the necessary nuclear energy to prevent the gravitational collapse of the Sun and give rise to the by now well-studied pp, 7Be, and 8B solar neutrinos. The not yet measured flux of 13N, 15O, and 17F neutrinos from the carbon-nitrogen-oxygen cycle is affected in rate by the 14N(p,γ)15O reaction and in emission profile by the 12C(p,γ)13N reaction. The nucleosynthetic output of the subsequent phase in stellar evolution, helium burning, is controlled by the 12C(α,γ)16O reaction.

In order to properly interpret the existing and upcoming solar neutrino data, precise nuclear physics information is needed. For nuclear reactions between light, stable nuclei, the best available technique are experiments with small ion accelerators in underground, low-background settings. The pioneering work in this regard has been done by the LUNA collaboration at Gran Sasso/Italy, using a 0.4 MV accelerator.

The present contribution reports on a higher-energy, 5.0 MV, underground accelerator in the Felsenkeller underground site in Dresden/Germany. Results from γ-ray, neutron, and muon background measurements in the Felsenkeller underground site in Dresden, Germany, show that the background conditions are satisfactory for nuclear astrophysics purposes. The accelerator is in the commissioning phase and will provide intense, up to 50 μA, beams of 1H+, 4He+, and 12C+ ions, enabling research on astrophysically relevant nuclear reactions with unprecedented sensitivity.

Details

Original languageEnglish
Pages249-263
Publication statusPublished - 18 Oct 2018
Peer-reviewedYes

Conference

Title5th International Solar Neutrino Conference
Conference number
Duration11 - 15 June 2018
Degree of recognitionInternational event
LocationDresden
City

External IDs

ORCID /0000-0002-0509-8743/work/141544938

Keywords

Keywords

  • physics.acc-ph, nucl-ex, physics.ins-det