The mTORC1-4E-BP-eIF4E axis controls de novo Bcl6 protein synthesis in T cells and systemic autoimmunity

Research output: Contribution to journalResearch articleContributedpeer-review

Contributors

  • Woelsung Yi - , Hospital for Special Surgery (HSS) (Author)
  • Sanjay Gupta - , Hospital for Special Surgery (HSS) (Author)
  • Edd Ricker - , Weill Cornell Medical College (Author)
  • Michela Manni - , Hospital for Special Surgery (HSS) (Author)
  • Rolf Jessberger - , Institute of Physiological Chemistry (Author)
  • Yurii Chinenov - , Hospital for Special Surgery (HSS) (Author)
  • Henrik Molina - , Rockefeller University (Author)
  • Alessandra B Pernis - , Hospital for Special Surgery (HSS) (Author)

Abstract

Post-transcriptional modifications can control protein abundance, but the extent to which these alterations contribute to the expression of T helper (TH) lineage-defining factors is unknown. Tight regulation of Bcl6 expression, an essential transcription factor for T follicular helper (TFH) cells, is critical as aberrant TFH cell expansion is associated with autoimmune diseases, such as systemic lupus erythematosus (SLE). Here we show that lack of the SLE risk variant Def6 results in deregulation of Bcl6 protein synthesis in T cells as a result of enhanced activation of the mTORC1-4E-BP-eIF4E axis, secondary to aberrant assembly of a raptor-p62-TRAF6 complex. Proteomic analysis reveals that this pathway selectively controls the abundance of a subset of proteins. Rapamycin or raptor deletion ameliorates the aberrant TFH cell expansion in mice lacking Def6. Thus deregulation of mTORC1-dependent pathways controlling protein synthesis can result in T-cell dysfunction, indicating a mechanism by which mTORC1 can promote autoimmunity.Excessive expansion of the T follicular helper (TFH) cell pool is associated with autoimmune disease and Def6 has been identified as an SLE risk variant. Here the authors show that Def6 limits proliferation of TFH cells in mice via alteration of mTORC1 signaling and inhibition of Bcl6 expression.

Details

Original languageEnglish
Article number254
JournalNature Communications
Volume8
Issue number1
Publication statusPublished - 15 Aug 2017
Peer-reviewedYes

External IDs

Scopus 85027492347
PubMed 28811467
PubMedCentral PMC5557982

Keywords

Keywords

  • Adaptor Proteins, Signal Transducing, Animals, Autoimmunity, Carrier Proteins/genetics, Cell Cycle Proteins, DNA-Binding Proteins/genetics, Eukaryotic Initiation Factor-4E/genetics, Eukaryotic Initiation Factors, Guanine Nucleotide Exchange Factors/genetics, Humans, Lupus Erythematosus, Systemic/genetics, Mechanistic Target of Rapamycin Complex 1/genetics, Mice, Mice, Inbred C57BL, Mice, Knockout, Nuclear Proteins/genetics, Phosphoproteins/genetics, Protein Binding, Protein Biosynthesis, Proto-Oncogene Proteins c-bcl-6/genetics, Signal Transduction, T-Lymphocytes, Helper-Inducer/metabolism