The influence of nanocrystal aggregates on photovoltaic performance in nanocrystal-polymer bulk heterojunction solar cells
Research output: Contribution to journal › Research article › Contributed › peer-review
Contributors
Abstract
CdSe nanocrystals (NCs) can be used as an electron acceptor in solar cells, employing organic ligands to passivate their surface and make them processable from solution. The nature and abundance of impurities present after NC ligand exchange from oleic acid to n-butylamine are identified. A further purification step using hexane as a selective solvent is described, which excludes NC aggregates from solution. The influence of NC aggregates on photovoltaic device performance is studied in a CdSe:poly[2-methoxy-5-(3',7'-dimethyloctyloxy)-1,4- phenylene vinylene] (MDMO-PPV) bulk heterojunction solar cell. The exclusion of NC aggregates leads to a four-fold increase in device power conversion efficiency (PCE) in optimized devices. A superior blend morphology leading to improved charge generation and a better NC percolation network is identified as the main causes of this increased solar cell performance. The influence of nanocrystal aggregates on photovoltaic device performance is studied in a CdSe:poly[2-methoxy-5-(3',7'-dimethyloctyloxy)-1,4-phenylene vinylene] (MDMO-PPV) bulk heterojunction solar cell. The exclusion of CdSe aggregates yields a superior blend morphology leading to improved charge generation and better percolation in the nanocrystal component. Solar cells with treated nanocrystals show a significant increase in device performance.
Details
Original language | English |
---|---|
Article number | 1400139 |
Journal | Advanced energy materials |
Volume | 4 |
Issue number | 12 |
Publication status | Published - Aug 2014 |
Peer-reviewed | Yes |
Externally published | Yes |
Keywords
Sustainable Development Goals
ASJC Scopus subject areas
Keywords
- charge generation, hybrid materials, ligand exchange, morphology, nanocrystals