The extremely hot and dry 2018 summer in central and northern Europe from a multi-faceted weather and climate perspective

Research output: Contribution to journalResearch articleContributedpeer-review

Contributors

  • Efi Rousi - , Potsdam Institute for Climate Impact Research (Author)
  • Andreas H. Fink - , Karlsruhe Institute of Technology (Author)
  • Lauren S. Andersen - , Potsdam Institute for Climate Impact Research (Author)
  • Florian N. Becker - , Karlsruhe Institute of Technology (Author)
  • Goratz Beobide-Arsuaga - , International Max Planck Research School on Earth System Modelling, University of Hamburg (Author)
  • Marcus Breil - , Karlsruhe Institute of Technology, University of Hohenheim (Author)
  • Giacomo Cozzi - , Deutscher Wetterdienst, Augsburg University (Author)
  • Jens Heinke - , Potsdam Institute for Climate Impact Research (Author)
  • Lisa Jach - , University of Hohenheim (Author)
  • Deborah Niermann - , Deutscher Wetterdienst (Author)
  • Dragan Petrovic - , Karlsruhe Institute of Technology (Author)
  • Andy Richling - , Free University of Berlin (Author)
  • Johannes Riebold - , Alfred Wegener Institute - Helmholtz Centre for Polar and Marine Research (Author)
  • Stella Steidl - , Deutscher Wetterdienst, University of Canterbury (Author)
  • Laura Suarez-Gutierrez - , Max Planck Institute for Meteorology, ETH Zurich, French National Centre for Scientific Research (CNRS) (Author)
  • Jordis S. Tradowsky - , Deutscher Wetterdienst, Bodeker Scientific (Author)
  • Dim Coumou - , Vrije Universiteit Amsterdam (VU), Royal Netherlands Meteorological Institute (Author)
  • André Düsterhus - , National University of Ireland Maynooth (Author)
  • Florian Ellsäßer - , Justus Liebig University Giessen (Author)
  • Georgios Fragkoulidis - , Johannes Gutenberg University Mainz (Author)
  • Daniel Gliksman - , Chair of Computational Landscape Ecology, Chair of Meteorology (Author)
  • Dörthe Handorf - , Alfred Wegener Institute - Helmholtz Centre for Polar and Marine Research (Author)
  • Karsten Haustein - , Helmholtz-Zentrum Hereon, Leipzig University (Author)
  • Kai Kornhuber - , Potsdam Institute for Climate Impact Research, Columbia University, German Council on Foreign Relations (Author)
  • Harald Kunstmann - , Karlsruhe Institute of Technology, Augsburg University (Author)
  • Joaquim G. Pinto - , Karlsruhe Institute of Technology (Author)
  • Kirsten Warrach-Sagi - , University of Hohenheim (Author)
  • Elena Xoplaki - , Justus Liebig University Giessen (Author)

Abstract

The summer of 2018 was an extraordinary season in climatological terms for northern and central Europe, bringing simultaneous, widespread, and concurrent heat and drought extremes in large parts of the continent with extensive impacts on agriculture, forests, water supply, and the socio-economic sector. Here, we present a comprehensive, multi-faceted analysis of the 2018 extreme summer in terms of heat and drought in central and northern Europe, with a particular focus on Germany. The heatwave first affected Scandinavia in mid-July and shifted towards central Europe in late July, while Iberia was primarily affected in early August. The atmospheric circulation was characterized by strongly positive blocking anomalies over Europe, in combination with a positive summer North Atlantic Oscillation and a double jet stream configuration before the initiation of the heatwave. In terms of possible precursors common to previous European heatwaves, the Eurasian double-jet structure and a tripolar sea surface temperature anomaly over the North Atlantic were already identified in spring. While in the early stages over Scandinavia the air masses at mid and upper levels were often of a remote, maritime origin, at later stages over Iberia the air masses primarily had a local-to-regional origin. The drought affected Germany the most, starting with warmer than average conditions in spring, associated with enhanced latent heat release that initiated a severe depletion of soil moisture. During summer, a continued precipitation deficit exacerbated the problem, leading to hydrological and agricultural drought. A probabilistic attribution assessment of the heatwave in Germany showed that such events of prolonged heat have become more likely due to anthropogenic global warming. Regarding future projections, an extreme summer such as that of 2018 is expected to occur every 2 out of 3 years in Europe in a +1.5°C warmer world and virtually every single year in a +2°C warmer world. With such large-scale and impactful extreme events becoming more frequent and intense under anthropogenic climate change, comprehensive and multi-faceted studies like the one presented here quantify the multitude of their effects and provide valuable information as a basis for adaptation and mitigation strategies.

Details

Original languageEnglish
Pages (from-to)1699-1718
Number of pages20
JournalNatural Hazards and Earth System Sciences
Volume23
Issue number5
Publication statusPublished - 1 May 2023
Peer-reviewedYes

Keywords

Sustainable Development Goals

ASJC Scopus subject areas