Template-basierte Klassifikation planarer Gesten

Research output: Types of thesisDoctoral thesis

Contributors

Abstract

Obwohl berührungsbasierte Interaktionen mit dem Aufkommen mobiler Geräte zunehmend Verbreitung fanden, beschränken sich Multi-Touch Eingaben größtenteils auf direkte Manipulationen. Im Bereich gestischer Kommandos finden, wenn überhaupt, nur Single-Touch Symbole Anwendung. Der vorliegenden Arbeit liegt der Gedanke zugrunde, dass die Umsetzung von Interaktionstechniken mit der Verfügbarkeit einfach zu handhabender Werkzeuge für deren Interpretation zusammenhängt. Auch kann die Hürde, eigene Techniken zu implementieren, verringert werden, wenn vielfältige Interaktionen erprobt sind und ihr Nutzen für Anwendungsentwickler abschätzbar wird. In der verfassten Dissertation wird ein Erkenner für planare, symbolische Gesten entwickelt, der über die Angabe von Templates trainiert werden kann und keine Beschränkung der Vielfalt von Eingaben auf berührungsempfindlichen Oberflächen voraussetzt. Um eine möglichst flexible Einsetzbarkeit zu gewährleisten, soll die Interpretation einer Geste unabhängig von natürlichen Varianzen - ihrer Translation, Skalierung, Rotation und Geschwindigkeit - und unter wenig spezifizierten Templates pro Klasse möglich sein. Weiterhin sind für Nutzerinteraktionen im Anwendungskontext übliche Echtzeit-Kriterien einzuhalten. Der vorgestellte Gestenerkenner basiert auf der Integration eines Nächste-Nachbar-Verfahrens in einen Ansatz der Bayes'schen Klassifikation.\n\nGesten werden in elementare, bedeutungstragende Einheiten zerlegt, aus deren lokalen Merkmalen mittels eines Sensor-Fusion Prozesses eine Maximum-Likelihood-Repräsentation abgeleitet wird. Die Flexibilität und hohe Genauigkeit des statistischen Verfahrens wird in ausführlichen Tests nachgewiesen. Unter gleichbleibenden Anforderungen wird eine Erweiterung vorgestellt, die eine Prädiktion von Gesten bei partiellen Eingaben ermöglicht. Deren Nutzen liegt - neben effizienteren Eingaben - in der nachgewiesenen Möglichkeit, per Templates spezifizierte direkte Manipulationen zu interpretieren. Zur Demonstration der Praxistauglichkeit der präsentierten Konzepte werden exemplarisch zwei Anwendungen entwickelt und mit Nutzern getestet, die eine vielseitige Verwendung von Mehr-Finger-Eingaben vorsehen. Neben einem Erkenner trainierbarer, domänenunabhängiger Skizzen wird ein System für die Texteingabe mit den Fingern bereitgestellt. Anhand von Nutzerstudien wird gezeigt, dass Multi-Touch beim Skizzieren verwendet wird, wenn es als Alternative zur Verfügung steht und die Verwendung eines Multi-Touch Gestenalphabetes im Vergleich zur Texteingabe per Single-Touch effizienteres Schreiben zulässt. Von den vorgestellten Konzepten können UI-Designer, Usability-Experten und Entwickler von Feedforward-Mechanismen zum dynamischen Lehren gestischer Eingaben gleichermaßen profitieren. Die Zerlegung einer Eingabe in Token und ihre Interpretation anhand der Zuordnung zu spezifizierten Templates lässt sich weiterhin auf benachbarte Gebiete, etwa die Offline-Erkennung von Symbolen, übertragen.

Details

Original languageGerman
Awarding Institution
Supervisors/Advisors
  • Weber, Gerhard, Mentor
Publication statusPublished - 2014
No renderer: customAssociatesEventsRenderPortal,dk.atira.pure.api.shared.model.researchoutput.Thesis

Keywords

Keywords

  • Accessibility