TEEMon: A Continuous Performance Monitoring Framework for TEEs

Research output: Contribution to conferencesPaperContributedpeer-review



Trusted Execution Environments (TEEs), such as Intel Software Guard eXtensions (SGX), are considered as a promising approach to resolve security challenges in clouds. TEEs protect the confidentiality and integrity of application code and data even against privileged attackers with root and physical access by providing an isolated secure memory area, i.e., enclaves. The security guarantees are provided by the CPU, thus even if system software is compromised, the attacker can never access the enclave's content. While this approach ensures strong security guarantees for applications, it also introduces a considerable runtime overhead in part by the limited availability of protected memory (enclave page cache). Currently, only a limited number of performance measurement tools for TEE-based applications exist and none offer performance monitoring and analysis during runtime.
This paper presents TEEMon, the first continuous performance monitoring and analysis tool for TEE-based applications. TEEMon provides not only fine-grained performance metrics during runtime, but also assists the analysis of identifying causes of performance bottlenecks, e.g., excessive system calls. Our approach smoothly integrates with existing open-source tools (e.g., Prometheus or Grafana) towards a holistic monitoring solution, particularly optimized for systems deployed through Docker containers or Kubernetes and offers several dedicated metrics and visualizations. Our evaluation shows that TEEMon's overhead ranges from 5% to 17%.


Original languageEnglish
Publication statusPublished - 2020

External IDs

Scopus 85098522809
ORCID /0000-0003-0768-6351/work/141545303


Research priority areas of TU Dresden

DFG Classification of Subject Areas according to Review Boards


  • Trusted Execution Environments, Performance monitoring, Computerized monitoring