Tailoring photocatalytic water splitting activity of boron-thiophene polymer through pore size engineering

Research output: Contribution to journalResearch articleContributedpeer-review

Contributors

Abstract

Taking into account the electron-rich and visible light response of thiophene, first-principles calculations have been carried out to explore the photocatalytic activity of donor-acceptor polymers incorporating thiophene and boron. Honeycomb-kagome boron-thiophene (BTP) polymers with varying numbers of thiophene units and fixed B center atoms are direct bandgap semiconductors with tunable bandgaps ranging from 2.41 to 1.88 eV and show high absorption coefficients under the ultraviolet and visible regions of the solar spectrum. Fine-tuning the band edges of the BTP polymer is efficiently achieved by adjusting the pore size through the manipulation of thiophene units between the B centers. This manipulation, achieved without excessive chemical functionalization, facilitates the generation of an appropriate quantity of photoexcited electrons and/or holes to straddle the redox potential of the water. Our study demonstrates that two units between B centers of thiophene in BTP polymers enable overall photocatalytic water splitting, whereas BTP polymers with larger pores solely promote photocatalytic hydrogen reduction. Moreover, the thermodynamics of hydrogen and oxygen reduction reactions either proceed spontaneously or need small additional external biases. Our findings provide the rationale for designing metal-free and single-material polymer photocatalysts based on thiophene, specifically for achieving efficient overall water splitting.

Details

Original languageEnglish
Article number094712
JournalJournal of Chemical Physics
Volume160
Issue number9
Publication statusPublished - 7 Mar 2024
Peer-reviewedYes

External IDs

PubMed 38445742