Synthesis and characterization of the properties of thermosensitive elastomers with thermoplastic and magnetic particles for application in soft robotics
Research output: Contribution to journal › Research article › Contributed › peer-review
Contributors
Abstract
In the currently rapidly developing field of soft robots, smart materials with controllable properties play the central role. Thermosensitive elastomers are soft, smart materials whose material properties can be controlled by changing their temperature. The aim of this work is to investigate the mechanical properties, to analyze the surface, the inner structure, and the heat transfer within the thermosensitive elastomer materials. This should provide a knowledge base for new combinations, such as a combination of thermosensitive and the well-known magneto sensitive elastomers, in order to realize new applications. Thermoplastic polycaprolactone particles were incorporated into a flexible polydimethylsiloxane matrix to produce thermosensitive elastomer samples. With a low melting point in the range of 58–60°C, polycaprolactone offers good application potential compared to other thermoplastic materials such as polymethamethylacrylate with a melting point above 160°C. Test samples of different material compositions and geometries were made to examine temperature-depending material properties. Two useful effects were identified: temperature-dependent change in stiffness and the shape memory effect. In certain examinations, carbonyl iron particles were also included to find out if the two particle systems are compatible with each other and can be combined in the polydimethylsiloxane matrix without disadvantages. Changes in shore hardness before and after the influence of temperature were investigated. Micro computed tomography images and scanning electron microscopy images of the respective samples were also obtained in order to detect the temperature influence on the material internally as well as on the surface of the thermosensitive elastomers in combination with carbonyl iron particles. In order to investigate the heat transfer within the samples, heating tests were carried out and the influence of different particle concentrations of the thermosensitive elastomers with and without carbonyl iron particles was determined. Further work will focus on comprehensive investigations of thermo-magneto-sensitive elastomers, as this will enable the functional integration in the material to be implemented with increased efficiency. By means of the different investigations, the authors see future applications for this class of materials in adaptive sensor and gripper elements in soft robotics.
Details
Original language | English |
---|---|
Article number | 51296 |
Journal | Journal of applied polymer science |
Volume | 138 |
Issue number | 44 |
Publication status | Published - 20 Nov 2021 |
Peer-reviewed | Yes |
External IDs
ORCID | /0000-0002-4179-2273/work/173053915 |
---|
Keywords
ASJC Scopus subject areas
Keywords
- elastomers, mechanical properties, spectroscopy, thermal properties, thermoplastics