Sybodies as Novel Bioreceptors toward Field-Effect Transistor-Based Detection of SARS-CoV-2 Antigens
Research output: Contribution to journal › Research article › Contributed › peer-review
Contributors
Abstract
The SARS-CoV-2 pandemic has increased the demand forlow-cost,portable, and rapid biosensors, driving huge research efforts towardnew nanomaterial-based approaches with high sensitivity. Many of thememploy antibodies as bioreceptors, which have a costly developmentprocess that requires animal facilities. Recently, sybodies emergedas a new alternative class of synthetic binders and receptors withhigh antigen binding efficiency, improved chemical stability, andlower production costs via animal-free methods. Their smaller sizeis an important asset to consider in combination with ultrasensitivefield-effect transistors (FETs) as transducers, which respond moreintensely when biorecognition occurs near their surface. This workdemonstrates the immobilization of sybodies against the spike proteinof the virus on silicon surfaces, which are often integral parts ofthe semiconducting channel of FETs. Immobilized sybodies maintainthe capability to capture antigens, even at low concentrations inthe femtomolar range, as observed by fluorescence microscopy. Finally,the first proof of concept of sybody-modified FET sensing is providedusing a nanoscopic silicon net as the sensitive area where the sybodiesare immobilized. The future development of further sybodies againstother biomarkers and their generalization in biosensors could be criticalto decrease the cost of biodetection platforms in future pandemics.
Details
Original language | English |
---|---|
Pages (from-to) | 40191–40200 |
Number of pages | 10 |
Journal | ACS applied materials & interfaces |
Volume | 15 |
Issue number | 34 |
Publication status | Published - 21 Aug 2023 |
Peer-reviewed | Yes |
External IDs
WOS | 001052038900001 |
---|---|
Scopus | 85169292145 |
Mendeley | 88e43a4a-75c8-38a2-bb72-a39188a54bbf |
ORCID | /0000-0002-3007-8840/work/142247152 |
ORCID | /0000-0002-9899-1409/work/142249235 |
Keywords
Research priority areas of TU Dresden
DFG Classification of Subject Areas according to Review Boards
- Theoretical Chemistry: Molecules, Materials, Surfaces
- Theoretical Chemistry: Electron Structure, Dynamics, Simulation
- Theoretical Condensed Matter Physics
- Statistical Physics, Soft Matter, Biological Physics, Nonlinear Dynamics
- Thermodynamics and Kinetics as well as Properties of Phases and Microstructure of Materials
- Biomaterials
- Computer-aided Material Design and Simulation of Material Behaviour from Atomistic to Microscopic Scale
- Synthesis and Properties of Functional Materials
- Experimental Condensed Matter Physics
- Physical Chemistry of Molecules, Liquids and Interfaces, Biophysical Chemistry
Subject groups, research areas, subject areas according to Destatis
- Optoelectronics
- Micro- and Nanoelectronics
- Theoretical Physics
- Sensors and Measurement Technology
- Software Technology
- Solid State Physics
- Materials Science
- Virology
- Materials Physics
- Forensic Medicine
- Library Science (general)
- Biomedical Engineering
- Building Materials Technology
- Environmental Engineering (incl. Recycling)
Sustainable Development Goals
- SDG 17 - Partnerships for the Goals
- SDG 7 - Affordable and Clean Energy
- SDG 6 - Clean Water and Sanitation
- SDG 9 - Industry, Innovation, and Infrastructure
- SDG 15 - Life on Land
- SDG 5 - Gender Equality
- SDG 1 - No Poverty
- SDG 11 - Sustainable Cities and Communities
- SDG 13 - Climate Action
- SDG 3 - Good Health and Well-being
- SDG 12 - Responsible Consumption and Production
ASJC Scopus subject areas
Keywords
- Debye length, SARS-CoV-2 biosensor, Field-effecttransistor, Silicon nanowires, Sybody, silicon nanowires, field-effect transistor, sybody