Suppression of the structural phase transition and lattice softening in slightly underdoped Ba1-xKxFe2As2 with electronic phase separation

Research output: Contribution to journalResearch articleContributedpeer-review

Contributors

  • D. S. Inosov - , Max Planck Institute for Gravitational Physics (Albert Einstein Institute) (Author)
  • A. Leineweber - , Max Planck Institute for Gravitational Physics (Albert Einstein Institute) (Author)
  • Xiaoping Yang - , Max Planck Institute for Gravitational Physics (Albert Einstein Institute) (Author)
  • J. T. Park - , Max Planck Institute for Gravitational Physics (Albert Einstein Institute) (Author)
  • N. B. Christensen - , University of Copenhagen (Author)
  • R. Dinnebier - , Max Planck Institute for Gravitational Physics (Albert Einstein Institute) (Author)
  • G. L. Sun - , Max Planck Institute for Gravitational Physics (Albert Einstein Institute) (Author)
  • Ch. Niedermayer - , Paul Scherrer Institute (Author)
  • D. Haug - , Max Planck Institute for Gravitational Physics (Albert Einstein Institute) (Author)
  • P. W. Stephens - , Stony Brook University (Author)
  • J. Stahn - , Paul Scherrer Institute (Author)
  • O. Khvostikova - , Leibniz Institute for Solid State and Materials Research Dresden (Author)
  • C. T. Lin - , Max Planck Institute for Gravitational Physics (Albert Einstein Institute) (Author)
  • O. K. Andersen - , Max Planck Institute for Gravitational Physics (Albert Einstein Institute) (Author)
  • B. Keimer - , Max Planck Institute for Gravitational Physics (Albert Einstein Institute) (Author)
  • V. Hinkov - , Max Planck Institute for Gravitational Physics (Albert Einstein Institute) (Author)

Abstract

We present x-ray powder diffraction (XRPD) and neutron-diffraction measurements on the slightly underdoped iron-pnictide superconductor Ba1-xKxFe2As2, T-c=32 K. Below the magnetic-transition temperature T-m=70 K, both techniques show an additional broadening of the nuclear Bragg peaks, suggesting a weak structural phase transition. However, macroscopically the system does not break its tetragonal symmetry down to 15 K. Instead, XRPD patterns at low temperature reveal an increase in the anisotropic microstrain proportionally in all directions. We associate this effect with the electronic phase separation previously observed in the same material and with the effect of lattice softening below the magnetic phase transition. We employ density-functional theory to evaluate the distribution of atomic positions in the presence of dopant atoms both in the normal and magnetic states and to quantify the lattice softening, showing that it can account for a major part of the observed increase in the microstrain.

Details

Original languageEnglish
Article number224503
Number of pages7
JournalPhysical Review B
Volume79
Issue number22
Publication statusPublished - Jun 2009
Peer-reviewedYes
Externally publishedYes

External IDs

Scopus 67650001836

Keywords

Keywords

  • arsenic alloys, barium alloys, crystal symmetry, density functional theory, doping profiles, iron alloys, magnetic transitions, neutron diffraction, potassium alloys, solid-state phase transformations, superconducting materials, X-ray diffraction, INITIO MOLECULAR-DYNAMICS, TOTAL-ENERGY CALCULATIONS, SPIN-DENSITY-WAVE, CRYSTAL-STRUCTURES, 43 K, SUPERCONDUCTIVITY, DIFFRACTION, ORDER, HOLE

Library keywords