Subtype-specific activation of estrogen receptors by a special extract of Rheum rhaponticum (ERr 731), its aglycones and structurally related compounds in U2OS human osteosarcoma cells

Research output: Contribution to journalResearch articleContributedpeer-review

Contributors

Abstract

The special extract ERr 731 from the roots of Rheum rhaponticum is the major constituent of Phytoestrol N which is used for the alleviation of menopausal symptoms. Recently, we demonstrated that ERr 731 and its aglycones trans-rhapontigenin and desoxyrhapontigenin as single test substances do not activate the estrogen receptors-alpha (ERalpha) in human endometrial adenoarcinoma cells. However, these substances together with the structurally related hydroxystilbenes cis-rhapontigenin, resveratrol and piceatannol activated the ERbeta-dependent reporter gene activity. To investigate if these substance are tissue selective ER activators, ERr 731 and the single test substances were examined in bone-derived U2OS cells stably expressing ERalpha or transiently expressing ERbeta. In the ERalpha expressing U2OS cells, a weak, but statistically significant ERalpha-coupled luciferase activity was detected with ERr 731 and desoxyrhapontigenin which was 10-times lower than with 10(8) M 17 beta-estradiol. In the ERbeta test system, all test substances significantly induced the luciferase activity in a magnitude comparable to 17beta-estradiol. All effects were abolished with the pure ER antagonist ICI 182 780, indicating an ER-specific effect. Intracellular actions were also examined with the glycosylated ERr 731 constituents rhaponticin and desoxyrhaponticin. Treatment of U2OS cells with defined mixtures of both glycosides resulted in a reporter gene activity comparable to that of ERr 731, thereby providing evidence for the existence of cellular uptake mechanisms for glycosylated hydroxystilbenes. This report confirms the strong ERbeta-dependent activity of ERr 731 and provides evidence for a tissue selective ER agonistic activity by ERr 731 and its aglycones, as demonstrated by the activation of ERalpha in bone cells but not in endometrial cells.

Details

Original languageEnglish
Pages (from-to)716-726
Number of pages11
JournalPhytomedicine
Volume14
Issue number11
Publication statusPublished - Nov 2007
Peer-reviewedYes

External IDs

Scopus 35048834712

Keywords

Keywords

  • Antineoplastic Agents, Phytogenic/administration & dosage, Cell Line, Tumor/drug effects, Dose-Response Relationship, Drug, Estrogen Antagonists/administration & dosage, Estrogen Receptor alpha/metabolism, Estrogen Receptor beta/metabolism, Humans, Osteosarcoma/drug therapy, Phytotherapy, Plant Extracts/administration & dosage, Receptors, Estrogen/metabolism, Rheum