Structural insights into the modulation of PDGF/PDGFR-β complexation by hyaluronan derivatives

Research output: Contribution to journalResearch articleContributedpeer-review

Contributors

Abstract

Angiogenesis is an important physiological process playing a crucial role in wound healing and cancer progression. Vascular endothelial growth factor (VEGF) and platelet derived growth factor (PDGF) are key players in angiogenesis. Based on previous findings regarding the modulation of VEGF activity by glycosaminoglycans (GAG), here we explore the interaction of hyaluronan (HA)-based GAG with PDGF and its receptor PDGFR-β by applying molecular modeling and dynamics simulations in combination with surface plasmon resonance (SPR). Computational analysis on the interaction of oligo-hyaluronan derivatives with different sulfation pattern and functionalization shows that these GAG interact with PDGF in relevant regions for receptor recognition, and that high sulfation as well as modification with the TAMRA group convey stronger binding. On the other hand, the studied oligo-hyaluronan derivatives are predicted to scarcely recognize PDGFR-β. SPR results are in line with the computational predictions regarding the binding pattern of HA tetrasaccharide (HA4) derivatives to PDGF and PDGFR-β. Furthermore, our experimental results also show that the complexation of PDGF to PDGFR-β can be modulated by HA4 derivatives. The results found open the path for considering HA4 derivatives as potential candidates to be exploited for modulation of the PDGF/PDGFR-β signaling system in angiogenesis and related disease conditions.

Details

Original languageEnglish
Pages (from-to)1441-1452
Number of pages12
Journal Biological chemistry
Volume402
Issue number11
Publication statusPublished - 26 Oct 2021
Peer-reviewedYes

External IDs

Scopus 85111567099
ORCID /0000-0002-5611-9903/work/142244032

Keywords

Sustainable Development Goals

Keywords

  • Carbohydrate Conformation, Humans, Hyaluronic Acid/chemistry, Models, Molecular, Platelet-Derived Growth Factor/chemistry, Receptor, Platelet-Derived Growth Factor beta/chemistry, Recombinant Proteins/chemistry, Surface Plasmon Resonance

Library keywords