Structural Insights and Reaction Profile of a New Unspecific Peroxygenase from Marasmius wettsteinii Produced in a Tandem-Yeast Expression System
Research output: Contribution to journal › Research article › Contributed › peer-review
Contributors
Abstract
Fungal unspecific peroxygenases (UPOs) are gaining momentum in synthetic chemistry. Of special interest is the UPO from Marasmius rotula (MroUPO), which shows an exclusive repertoire of oxyfunctionalizations, including the terminal hydroxylation of alkanes, the α-oxidation of fatty acids and the C-C cleavage of corticosteroids. However, the lack of heterologous expression systems to perform directed evolution has impeded its engineering for practical applications. Here, we introduce a close ortholog of MroUPO, a UPO gene from Marasmius wettsteinii (MweUPO-1), that has a similar reaction profile to MroUPO and for which we have set up a directed evolution platform based on tandem-yeast expression. Recombinant MweUPO-1 was produced at high titers in the bioreactor (0.7 g/L) and characterized at the biochemical and atomic levels. The conjunction of soaking crystallographic experiments at a resolution up to 1.6 Å together with the analysis of reaction patterns sheds light on the substrate preferences of this promiscuous biocatalyst.
Details
Original language | English |
---|---|
Pages (from-to) | 2240-2253 |
Number of pages | 14 |
Journal | ACS chemical biology |
Volume | 19 |
Issue number | 10 |
Early online date | 5 Oct 2024 |
Publication status | Published - 18 Oct 2024 |
Peer-reviewed | Yes |
External IDs
PubMed | 39367827 |
---|---|
Scopus | 85205761077 |
Keywords
Keywords
- Selective synthesis, Fungal, Hydroxylation, Oxygenation, Oxidations