Starvation-induced regulation of carbohydrate transport at the blood–brain barrier is TGF-β-signaling dependent

Research output: Contribution to journalResearch articleContributedpeer-review

Contributors

Abstract

During hunger or malnutrition, animals prioritize alimentation of the brain over other organs to ensure its function and, thus, their survival. This protection, also-called brain sparing, is described from Drosophila to humans. However, little is known about the molecular mechanisms adapting carbohydrate transport. Here, we used Drosophila genetics to unravel the mechanisms operating at the blood–brain barrier (BBB) under nutrient restriction. During starvation, expression of the carbohydrate transporter Tret1-1 is increased to provide more efficient carbohydrate uptake. Two mechanisms are responsible for this increase. Similar to the regulation of mammalian GLUT4, Rab-dependent intracellular shuttling is needed for Tret1-1 integration into the plasma membrane; even though Tret1-1 regulation is independent of insulin signaling. In addition, starvation induces transcriptional upregulation that is controlled by TGF-β signaling. Considering TGF-β-dependent regulation of the glucose transporter GLUT1 in murine chondrocytes, our study reveals an evolutionarily conserved regulatory paradigm adapting the expression of sugar transporters at the BBB.

Details

Original languageEnglish
Article numbere62503
JournaleLife
Volume10
Publication statusPublished - 25 May 2021
Peer-reviewedYes

External IDs

Scopus 85106877377

Keywords

Sustainable Development Goals