SSDP cofactors regulate neural patterning and differentiation of specific axonal projections
Research output: Contribution to journal › Research article › Contributed › peer-review
Contributors
Abstract
The developmental activity of LIM homeodomain transcription factors (LIM-HDs) is critically controlled by LIM domain-interacting cofactors of LIM-HDs (CLIM, also known as NLI or LDB). CLIM cofactors associate with single-stranded DNA binding proteins (SSDPs, also known as SSBPs) thereby recruiting SSDP1 and/or SSDP2 to LIM-HD/CLIM complexes. Although evidence has been presented that SSDPs are important for the activity of specific LIM-HD/CLIM complexes, the developmental roles of SSDPs are unclear. We show that SSDP1a and SSDP1b mRNAs are widely expressed early during zebrafish development with conspicuous expression of SSDP1b in sensory trigeminal and Rohon-Beard neurons. SSDP1 and CLIM immunoreactivity co-localize in these neuronal cell types and in other structures. Over-expression of the N-terminal portion of SSDP1 (N-SSDP1), which contains the CLIM-interaction domain, increases endogenous CLIM protein levels in vivo and impairs the formation of eyes and midbrain-hindbrain boundary. In addition, manipulation of SSDP1 via N-SSDP1 over-expression or SSDP1b knock down impairs trigeminal and Rohon-Beard sensory axon growth. We show that N-SSDP1 is able to partially rescue the inhibition of axon growth induced by a dominant-negative form of CLIM (DN-CLIM). These results reveal specific functions of SSDP in neural patterning and sensory axon growth, in part due to the stabilization of LIM-HD/CLIM complexes.
Details
Original language | English |
---|---|
Pages (from-to) | 213-224 |
Number of pages | 12 |
Journal | Developmental biology |
Volume | 349 |
Issue number | 2 |
Publication status | Published - 5 Nov 2010 |
Peer-reviewed | Yes |
Externally published | Yes |
Keywords
ASJC Scopus subject areas
Keywords
- CLIM, Development of axonal projections, LIM homeodomain protein, Neural patterning, Protein interaction, SSDP, Transcriptional cofactors