Small-molecule CBP/p300 histone acetyltransferase inhibition mobilizes leukocytes from the bone marrow via the endocrine stress response
Research output: Contribution to journal › Research article › Contributed › peer-review
Contributors
Abstract
Mutations of the CBP/p300 histone acetyltransferase (HAT) domain can be linked to leukemic transformation in humans, suggestive of a checkpoint of leukocyte compartment sizes. Here, we examined the impact of reversible inhibition of this domain by the small-molecule A485. We found that A485 triggered acute and transient mobilization of leukocytes from the bone marrow into the blood. Leukocyte mobilization by A485 was equally potent as, but mechanistically distinct from, granulocyte colony-stimulating factor (G-CSF), which allowed for additive neutrophil mobilization when both compounds were combined. These effects were maintained in models of leukopenia and conferred augmented host defenses. Mechanistically, activation of the hypothalamus-pituitary-adrenal gland (HPA) axis by A485 relayed shifts in leukocyte distribution through corticotropin-releasing hormone receptor 1 (CRHR1) and adrenocorticotropic hormone (ACTH), but independently of glucocorticoids. Our findings identify a strategy for rapid expansion of the blood leukocyte compartment via a neuroendocrine loop, with implications for the treatment of human pathologies.
Details
Original language | English |
---|---|
Pages (from-to) | 364-378.e9 |
Journal | Immunity |
Volume | 57 |
Issue number | 2 |
Publication status | Published - 13 Feb 2024 |
Peer-reviewed | Yes |
External IDs
PubMed | 38301651 |
---|---|
ORCID | /0000-0002-8691-8423/work/154190476 |
ORCID | /0000-0002-7689-8617/work/154190647 |
ORCID | /0000-0003-1526-997X/work/154192649 |
ORCID | /0009-0001-6045-3349/work/154192763 |
ORCID | /0000-0002-6862-1650/work/173517148 |
Keywords
Sustainable Development Goals
ASJC Scopus subject areas
Keywords
- Bone marrow mobilization, CBP/p300, G-CSF, HAT domain, HPA axis, Rubinstein-Taybi syndrome, bone marrow failure, glucocorticoids, neutropenia, neutrophils, Neutrophils/metabolism, Humans, Histone Acetyltransferases/metabolism, Histones/metabolism, Bone Marrow/metabolism, Hypothalamo-Hypophyseal System/metabolism