Simultaneous lineage tracing and cell-type identification using CRISPR-Cas9-induced genetic scars
Research output: Contribution to journal › Research article › Contributed › peer-review
Contributors
Abstract
A key goal of developmental biology is to understand how a single cell is transformed into a full-grown organism comprising many different cell types. Single-cell RNA-sequencing (scRNA-seq) is commonly used to identify cell types in a tissue or organ(1). However, organizing the resulting taxonomy of cell types into lineage trees to understand the developmental origin of cells remains challenging. Here we present LINNAEUS (lineage tracing by nuclease-activated editing of ubiquitous sequences)-a strategy for simultaneous lineage tracing and transcriptome profiling in thousands of single cells. By combining scRNA-seq with computational analysis of lineage barcodes, generated by genome editing of transgenic reporter genes, we reconstruct developmental lineage trees in zebrafish larvae, and in heart, liver, pancreas, and telencephalon of adult fish. LINNAEUS provides a systematic approach for tracing the origin of novel cell types, or known cell types under different conditions.
Details
Original language | English |
---|---|
Pages (from-to) | 469–473 |
Number of pages | 5 |
Journal | Nature biotechnology |
Volume | 36 |
Issue number | 5 |
Publication status | Published - May 2018 |
Peer-reviewed | Yes |
External IDs
PubMed | 29644996 |
---|---|
Scopus | 85045136951 |
Keywords
Keywords
- Single cells, Stem-cells, Zebrafish embryo, Expression, Dynamics, Progenitors, Tracking, Design, Model