Selenoprotein synthesis in archaea
Research output: Contribution to journal › Short survey/Review › Contributed › peer-review
Contributors
Abstract
The availability of the genome sequences from several archaea has facilitated the identification of the encoded selenoproteins and also of most of the components of the machinery for selenocysteine biosynthesis and insertion. Until now, selenoproteins have been identified solely in species of the genera Methanococcus (M.) and Methanopyrus. Apart from selenophosphate synthetase, they include only enzymes with a function in energy metabolism. Like in bacteria and eukarya, selenocysteine insertion is directed by a UGA codon in the mRNA and involves the action of a specific tRNA and of selenophosphate as the selenium donor. Major differences to the bacterial system, however, are that no homolog for the bacterial selenocysteine synthase was found and, especially, that the SECIS element of the mRNA is positioned in the 3′ nontranslated region. The characterisation of a homolog for the bacterial SelB protein showed that it does not bind to the SECIS element necessitating the activity of at least a second protein. The use of the genetic system of M. maripaludis allowed the heterologous expression of a selenoprotein gene from M. jannaschii and will facilitate the elucidation of the mechanism of the selenocysteine insertion process in the future.
Details
Original language | English |
---|---|
Pages (from-to) | 75-83 |
Number of pages | 9 |
Journal | BioFactors |
Volume | 14 |
Issue number | 1-4 |
Publication status | Published - 2001 |
Peer-reviewed | Yes |
Externally published | Yes |
External IDs
PubMed | 11568443 |
---|
Keywords
ASJC Scopus subject areas
Keywords
- Archaea, Methanococcus sp, Methanopyrus sp, SECIS, SelB, Selenoprotein synthesis