SDFEM for an elliptic singularly perturbed problem with two parameters

Research output: Contribution to journalResearch articleContributedpeer-review

Contributors

Abstract

A singularly perturbed problem with two small parameters in two dimensions is investigated. Using its discretization by a streamline-diffusion finite element method with piecewise bilinear elements on a Shishkin mesh, we analyze the superconvergence property of the method and suggest the choice of stabilization parameters to attain optimal error estimate in the corresponding streamline-diffusion norm. Numerical tests confirm our theoretical results.

Details

Original languageEnglish
Article number50
JournalCalcolo
Volume55
Issue number4
Publication statusPublished - 1 Dec 2018
Peer-reviewedYes

External IDs

ORCID /0000-0002-2458-1597/work/142239726

Keywords

Keywords

  • Singularly perturbed problem, Stabilization parameter, Streamline-diffusion method, Superconvergence, Two small parameters