Recent advances in wearable electrochemical biosensors towards technological and material aspects
Research output: Contribution to journal › Review article › Contributed › peer-review
Contributors
Abstract
The next generation of wearable biosensors comes with the latest advancements in biosensor technology. Soft and stretchable electrode materials like hydrogels with the similar functionalities of human tissue including stretchability, self-healability, and responsiveness to different stimuli have emerged as the most versatile materials in wearable electronics. The incorporation of conductive nanofillers is found to enhance the sensitivity of the electrochemical biosensors significantly. Microfluidic technology has reduced the volume of samples and reagents required for the analysis, allowing continuous biomedical monitoring from a drop of biofluid. In this paper, the most advanced progress in electrochemical wearable platforms that can noninvasively and continuously monitor the biochemical markers in body fluids for the diagnosis and health management is reviewed. Innovation in microelectronics, modification, fabrication technologies, and detection methods are the main focus of the discussion. In particular, hydrogel-based sensors and microfluidic systems as the latest technology trends in wearable detection are discussed in detail. Integration of miniaturized electrochemical wearable biosensors with wireless technology as a great promise for real-time healthcare monitoring and point-of-care (POC) diagnostics is also summarized. Finally, we outline the most advanced wearable biosensors with optimized material and design as well as key challenges that need to be addressed to improve sensing performance (accuracy, sensitivity, selectivity, stability), portability (miniaturized size and light weight), and flexibility of the wearable biosensors.
Details
Original language | English |
---|---|
Article number | 100503 |
Journal | Biosensors and Bioelectronics: X |
Volume | 19 |
Publication status | Published - Aug 2024 |
Peer-reviewed | Yes |
Keywords
Sustainable Development Goals
ASJC Scopus subject areas
Keywords
- Body fluids, Electrochemical wearable biosensors, Hydrogel-based, Microfluidics, Point-of-care diagnostics, Wireless technology